
OvOvererviewview
Casbin is a powerful and efficient open-source access control library that supports various access control

models for enforcing authorization across the board.

Enforcing a set of rules is as simple as listing subjects, objects, and the desired allowed action (or any other

format as per your needs) in a policypolicy file. This is synonymous across all flows in which Casbin is used. The

developer/administrator has complete control over the layout, execution, and conditions for authorization, which

are set via the modelmodel file. Casbin provides an EnfEnfororcercer for validating an incoming request based on the policy and

model files given to the Enforcer.

Languages SupporLanguages Supportted bed by Casbiny Casbin
Casbin provides support for various programming languages, ready to be integrated within any project and

workflow:

Casbin jCasbin

Production-ready Production-ready

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://en.wikipedia.org/wiki/Access_control#Access_control_models
https://en.wikipedia.org/wiki/Access_control#Access_control_models
https://github.com/casbin/casbin
https://github.com/casbin/casbin
https://github.com/casbin/jcasbin
https://github.com/casbin/jcasbin
https://github.com/casbin/node-casbin
https://github.com/casbin/node-casbin
https://github.com/php-casbin/php-casbin
https://github.com/php-casbin/php-casbin
https://github.com/casbin/casbin
https://github.com/casbin/jcasbin
https://github.com/casbin/node-casbin
https://github.com/php-casbin/php-casbin

PyCasbin Casbin.NET

Production-ready Production-ready

FFeatureature Set fe Set for Diffor Differerent Languagesent Languages

We are always working our best to make Casbin have the same set of features for all languages. However, the

reality is not that beautiful.

FFeatureaturee GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon C#C# DelphiDelphi RustRust C++C++ LuaLua DarDartt ElixirElixir

Enforcement ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

RBAC ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

ABAC ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

Scaling

ABAC

(eval())

✅ ✅ ✅ ✅ ✅ ✅ ❌ ✅ ✅ ✅ ✅ ✅

Adapter ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ❌

Management

API
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

RBAC API ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

Batch API ✅ ✅ ✅ ✅ ✅ ✅ ❌ ✅ ✅ ✅ ❌ ❌

https://github.com/casbin/pycasbin
https://github.com/casbin/pycasbin
https://github.com/casbin/Casbin.NET
https://github.com/casbin/Casbin.NET
https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-rs
https://github.com/casbin/casbin-rs
https://github.com/casbin/pycasbin
https://github.com/casbin/Casbin.NET
https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-rs

FFeatureaturee GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon C#C# DelphiDelphi RustRust C++C++ LuaLua DarDartt ElixirElixir

Filtered

Adapter
✅ ✅ ✅ ✅ ✅ ✅ ❌ ✅ ✅ ✅ ❌ ❌

Watcher ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ❌ ❌

Role

Manager
✅ ✅ ✅ ✅ ✅ ✅ ❌ ✅ ✅ ✅ ✅ ❌

Multi-

Threading
✅ ✅ ✅ ❌ ✅ ❌ ❌ ✅ ❌ ❌ ❌ ❌

'in' of

matcher
✅ ✅ ✅ ✅ ✅ ❌ ✅ ❌ ❌ ❌ ✅ ✅

NotNotee - ✅ for Watcher or Role Manager only means having the interface in the core library. It is not indicative of

whether there is a watcher or role manager implementation available.

What is Casbin?What is Casbin?
Casbin is an authorization library that can be used in flows where we want a certain object or entity to be

accessed by a specific user or subject . The type of access, i.e. action , can be read, write, delete, or any

other action as set by the developer. This is how Casbin is most widely used, and it's called the "standard" or

classic { subject, object, action } flow.

Casbin is capable of handling many complex authorization scenarios other than the standard flow. There can be

the addition of roles (RBAC), attributes (ABAC), etc.

What Casbin DoesWhat Casbin Does

1. Enforce the policy in the classic { subject, object, action } form or a customized form as you defined.

Both allow and deny authorizations are supported.

2. Handle the storage of the access control model and its policy.

3. Manage the role-user mappings and role-role mappings (aka role hierarchy in RBAC).

4. Support built-in superusers like root or administrator . A superuser can do anything without explicit

permissions.

5. Provide multiple built-in operators to support rule matching. For example, keyMatch can map a resource key

/foo/bar to the pattern /foo* .

What Casbin DoesWhat Casbin Does NONOTT DoDo

1. Authentication (aka verifying username and password when a user logs in)

2. Manage the list of users or roles.

It's more convenient for projects to manage their lists of users, roles, or passwords. Users usually have their

passwords, and Casbin is not designed as a password container. However, Casbin stores the user-role mapping

for the RBAC scenario.

Get StarGet Startteded
InstallationInstallation

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon .NET.NET C++C++ RustRust

DelphiDelphi LuaLua

For Maven:

Require this package in the composer.json of your project to download the

package:

go get github.com/casbin/casbin/v2

<!-- https://mvnrepository.com/artifact/org.casbin/jcasbin -->

<dependency>

<groupId>org.casbin</groupId>

<artifactId>jcasbin</artifactId>

<version>1.x.y</version>

</dependency>

NPM

npm install casbin --save

Yarn

yarn add casbin

composer require casbin/casbin

Casbin4D comes in a package (currently for Delphi 10.3 Rio) and you can install it

in the IDE. However, there are no visual components which means that you can

use the units independently of packages. Just import the units in your project

(assuming you do not mind the number of them).

If you receive an error message: "Your user does not have write permissions in

/usr/local/lib/luarocks/rocks", you may want to run the command as a privileged

pip install casbin

dotnet add package Casbin.NET

Download source

git clone https://github.com/casbin/casbin-cpp.git

Generate project files

cd casbin-cpp && mkdir build && cd build && cmake ..

-DCMAKE_BUILD_TYPE=Release

Build and install casbin

cmake --build . --config Release --target casbin install -j 10

cargo install cargo-edit

cargo add casbin

// If you use async-std as async executor

cargo add async-std

// If you use tokio as async executor, make sure you activate

its `macros` feature

cargo add tokio

luarocks install casbin

user or use your local tree with --local . To fix the error, you can add --local

behind your command like this:

New a Casbin enfNew a Casbin enfororcercer
Casbin uses configuration files to define the access control model.

There are two configuration files: model.conf and policy.csv . model.conf

stores the access model, while policy.csv stores the specific user permission

configuration. The usage of Casbin is very straightforward. We only need to create

one main structure: enfenfororcercer. When constructing this structure, model.conf and

policy.csv will be loaded.

In other words, to create a Casbin enforcer, you need to provide a Model and an

Adapter.

Casbin provides a FileAdapter that you can use. See Adapter for more information.

• Example of using the Model file and the default FileAdapter:

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon .NET.NET C++C++ DelphiDelphi

RustRust LuaLua

luarocks install casbin --local

import "github.com/casbin/casbin/v2"

import org.casbin.jcasbin.main.Enforcer;

Enforcer e = new Enforcer("path/to/model.conf", "path/to/

policy.csv");

import { newEnforcer } from 'casbin';

const e = await newEnforcer('path/to/model.conf', 'path/to/

policy.csv');

require_once './vendor/autoload.php';

use Casbin\Enforcer;

$e = new Enforcer("path/to/model.conf", "path/to/policy.csv");

import casbin

e = casbin.Enforcer("path/to/model.conf", "path/to/policy.csv")

using NetCasbin;

var e = new Enforcer("path/to/model.conf", "path/to/

policy.csv");

#include <iostream>

#include <casbin/casbin.h>

int main() {

// Create an Enforcer

casbin::Enforcer e("path/to/model.conf", "path/to/

policy.csv");

• Use the Model text with other Adapter:

var

casbin: ICasbin;

begin

casbin := TCasbin.Create('path/to/model.conf', 'path/to/

policy.csv');

...

end

use casbin::prelude::*;

// If you use async_td as async executor

#[cfg(feature = "runtime-async-std")]

#[async_std::main]

async fn main() -> Result<()> {

let mut e = Enforcer::new("path/to/model.conf", "path/to/

policy.csv").await?;

Ok(())

}

// If you use tokio as async executor

#[cfg(feature = "runtime-tokio")]

#[tokio::main]

async fn main() -> Result<()> {

let mut e = Enforcer::new("path/to/model.conf", "path/to/

policy.csv").await?;

Ok(())

}

local Enforcer = require("casbin")

local e = Enforcer:new("path/to/model.conf", "path/to/

policy.csv") -- The Casbin Enforcer

GoGo PytPythonhon

import (

"log"

"github.com/casbin/casbin/v2"

"github.com/casbin/casbin/v2/model"

xormadapter "github.com/casbin/xorm-adapter/v2"

_ "github.com/go-sql-driver/mysql"

)

// Initialize a Xorm adapter with MySQL database.

a, err := xormadapter.NewAdapter("mysql",

"mysql_username:mysql_password@tcp(127.0.0.1:3306)/")

if err != nil {

log.Fatalf("error: adapter: %s", err)

}

m, err := model.NewModelFromString(`

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act

`)

if err != nil {

log.Fatalf("error: model: %s", err)

}

Check permissionsCheck permissions

Add an enforcement hook into your code right before the access happens:

import casbin

import casbin_sqlalchemy_adapter

Use SQLAlchemy Casbin adapter with SQLLite DB

adapter = casbin_sqlalchemy_adapter.Adapter('sqlite:///test.db')

Create a config model policy

with open("rbac_example_model.conf", "w") as f:

f.write("""

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act

""")

Create enforcer from adapter and config policy

e = casbin.Enforcer('rbac_example_model.conf', adapter)

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon .NET.NET C++C++ DelphiDelphi

RustRust LuaLua

sub := "alice" // the user that wants to access a resource.

obj := "data1" // the resource that is going to be accessed.

act := "read" // the operation that the user performs on the

resource.

ok, err := e.Enforce(sub, obj, act)

if err != nil {

// handle err

}

if ok == true {

// permit alice to read data1

} else {

// deny the request, show an error

}

// You could use BatchEnforce() to enforce some requests in

batches.

// This method returns a bool slice, and this slice's index

corresponds to the row index of the two-dimensional array.

// e.g. results[0] is the result of {"alice", "data1", "read"}

results, err := e.BatchEnforce([][]interface{}{{"alice",

"data1", "read"}, {"bob", "data2", "write"}, {"jack", "data3",

"read"}})

String sub = "alice"; // the user that wants to access a

resource.

String obj = "data1"; // the resource that is going to be

accessed.

const sub = 'alice'; // the user that wants to access a

resource.

const obj = 'data1'; // the resource that is going to be

accessed.

const act = 'read'; // the operation that the user performs on

the resource.

if ((await e.enforce(sub, obj, act)) === true) {

// permit alice to read data1

} else {

// deny the request, show an error

}

$sub = "alice"; // the user that wants to access a resource.

$obj = "data1"; // the resource that is going to be accessed.

$act = "read"; // the operation that the user performs on the

resource.

if ($e->enforce($sub, $obj, $act) === true) {

// permit alice to read data1

} else {

// deny the request, show an error

}

sub = "alice" # the user that wants to access a resource.

obj = "data1" # the resource that is going to be accessed.

act = "read" # the operation that the user performs on the

resource.

if e.enforce(sub, obj, act):

permit alice to read data1

pass

else:

deny the request, show an error

pass

var sub = "alice"; # the user that wants to access a resource.

var obj = "data1"; # the resource that is going to be accessed.

var act = "read"; # the operation that the user performs on

the resource.

if (await e.EnforceAsync(sub, obj, act))

{

// permit alice to read data1

}

else

{

// deny the request, show an error

}

casbin::Enforcer e("../assets/model.conf", "../assets/

policy.csv");

if (e.Enforce({"alice", "/alice_data/hello", "GET"})) {

std::cout << "Enforce OK" << std::endl;

} else {

std::cout << "Enforce NOT Good" << std::endl;

}

if (e.Enforce({"alice", "/alice_data/hello", "POST"})) {

std::cout << "Enforce OK" << std::endl;

} else {

std::cout << "Enforce NOT Good" << std::endl;

}

if casbin.enforce(['alice,data1,read']) then

// Alice is super happy as she can read data1

else

// Alice is sad

Casbin also provides API for permission management at run-time. For example,

You can get all the roles assigned to a user as below:

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon .NET.NET DelphiDelphi RustRust

LuaLua

let sub = "alice"; // the user that wants to access a

resource.

let obj = "data1"; // the resource that is going to be

accessed.

let act = "read"; // the operation that the user performs on

the resource.

if e.enforce((sub, obj, act)).await? {

// permit alice to read data1

} else {

// error occurs

}

if e:enforce("alice", "data1", "read") then

-- permit alice to read data1

else

-- deny the request, show an error

end

roles, err := e.GetRolesForUser("alice")

List<String> roles = e.getRolesForUser("alice");

See Management API and RBAC API for more usage.

Please refer to the test cases for more usage.

const roles = await e.getRolesForUser('alice');

$roles = $e->getRolesForUser("alice");

roles = e.get_roles_for_user("alice")

var roles = e.GetRolesForUser("alice");

roles = e.rolesForEntity("alice")

let roles = e.get_roles_for_user("alice");

local roles = e:GetRolesForUser("alice")

HoHow It Ww It Worksorks
In Casbin, an access control model is abstracted into a CONF file based on the

PERM metamodel (PPERM metamodel (Policyolicy, Eff, Effect, Rect, Request, Matequest, Matchers)chers). Switching or upgrading the

authorization mechanism for a project is as simple as modifying a configuration.

You can customize your own access control model by combining the available

models. For example, you can combine RBAC roles and ABAC attributes together

inside one model and share one set of policy rules.

The PERM model is composed of four foundations: Policy, Effect, Request, and

Matchers. These foundations describe the relationship between resources and

users.

RRequestequest

Defines the request parameters. A basic request is a tuple object, requiring at

least a subject (accessed entity), object (accessed resource), and action (access

method).

For instance, a request definition may look like this: r={sub,obj,act}

This definition specifies the parameter names and ordering required by the access

control matching function.

PPolicyolicy

Defines the model for the access strategy. It specifies the name and order of the

fields in the Policy rule document.

For instance: p={sub, obj, act} or p={sub, obj, act, eft}

Note: If eft (policy result) is not defined, the result field in the policy file will not be

read, and the matching policy result will be allowed by default.

MatMatchercher

Defines the matching rules for Request and Policy.

For example: m = r.sub == p.sub && r.act == p.act && r.obj == p.obj

This simple and common matching rule means that if the requested parameters

(entities, resources, and methods) are equal to those found in the policy, then the

policy result (p.eft) is returned. The result of the strategy will be saved in

p.eft .

EffEffectect

Performs a logical combination judgment on the matching results of Matchers.

For example: e = some(where(p.eft == allow))

This statement means that if the matching strategy result p.eft has the result of

(some) allow, then the final result is true.

Let's look at another example:

e = some(where (p.eft == allow)) && !some(where (p.eft == deny))

The logical meaning of this example combination is: if there is a strategy that

matches the result of allow and no strategy that matches the result of deny, the

result is true. In other words, it is true when the matching strategies are all allow. If

there is any deny, both are false (more simply, when allow and deny exist at the

same time, deny takes precedence).

The most basic and simplest model in Casbin is ACL. The model CONF for ACL is

as follows:

An example policy for the ACL model is:

This means:

• alice can read data1

• bob can write data2

We also support multi-line mode by appending '\' in the end:

Request definition

[request_definition]

r = sub, obj, act

Policy definition

[policy_definition]

p = sub, obj, act

Policy effect

[policy_effect]

e = some(where (p.eft == allow))

Matchers

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act

p, alice, data1, read

p, bob, data2, write

Matchers

[matchers]

Furthermore, if you are using ABAC, you can try the 'in' operator as shown in the

following example for the Casbin golanggolang edition (jCasbin and Node-Casbin are not

supported yet):

But you MUSTMUST make sure that the length of the array is MOREMORE than 11, otherwise it

will cause a panic.

For more operators, you may take a look at govaluate.

Matchers

[matchers]

m = r.obj == p.obj && r.act == p.act || r.obj in ('data2',

'data3')

https://github.com/Knetic/govaluate

TTututorialsorials
Before reading, please note that some tutorials are for the Casbin's model and

work for all Casbin implementations in different languages. Some other tutorials

are language-specific.

Our PapersOur Papers

• PML: An Interpreter-Based Access Control Policy Language for Web Services

This paper digs deeply into the design details about Casbin. Please cite the

following BibTex if you use Casbin/PML as a reference in your paper:

• Access Control Policy Specification Language Based on Metamodel (in

Chinese)

This is another longer-version paper published in Journal of Software. The citation

for different formats (Refworks, EndNote, etc.) can be found at: (another version)

Access Control Policy Specification Language Based on Metamodel (in Chinese)

VideosVideos

• A Secure Vault - implementing authorization middleware with Casbin -

@article{luo2019pml,

title={PML: An Interpreter-Based Access Control Policy

Language for Web Services},

author={Luo, Yang and Shen, Qingni and Wu, Zhonghai},

journal={arXiv preprint arXiv:1903.09756},

year={2019}

}

https://arxiv.org/abs/1903.09756
https://www.jos.org.cn/jos/article/abstract/5624
https://www.jos.org.cn/jos/article/abstract/5624
https://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CJFDLAST2020&filename=RJXB202002012&v=
https://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CJFDLAST2020&filename=RJXB202002012&v=
https://www.youtube.com/watch?v=OTT84oplR9o

JuniorDevSG

• Sharing user permissions in a micro-service architecture based on Casbin (in

Russian)

• Nest.js - Casbin RESTful RBAC authorization middleware

• Gin Tutorial Chapter 10: Learn Casbin basic models in 30 minutes (in Chinese)

• Gin Tutorial Chapter 11: Coding, API and custom function in Casbin (in

Chinese)

• Gin + Casbin: Learning Permissions in Action (in Chinese)

• jCasbin Basics: A simple RBAC example (in Chinese)

• Golang's RBAC based on Casbin (in Chinese)

• Learning Gin + Casbin (1): Opening & Overview (in Chinese)

• ThinkPHP 5.1 + Casbin: Introduction (in Chinese)

• ThinkPHP 5.1 + Casbin: RBAC authorization (in Chinese)

• ThinkPHP 5.1 + Casbin: RESTful & Middleware (in Chinese)

• Quick Start for PHP-Casbin (in Chinese)

• ThinkPHP 5.1 + Casbin: How to use custom matching functions (in Chinese)

• Webman + Casbin: How to use Webman Casbin Plugin (in Chinese)

PERM Meta-Model (PPERM Meta-Model (Policyolicy, Eff, Effect, Rect, Request, Matequest, Matchers)chers)

• Understanding Casbin with different Access Control Model Configurations

• Modeling Authorization with PERM in Casbin

• Designing a Flexible Permissions System with Casbin

• Authorize with Access Control Lists

• Access control with PERM and Casbin (in Persian)

• RBAC? ABAC? .. PERM! New Way of Authorization for Cloud-Based Web

Services and Apps (in Russian)

• Practice & Examples of Flexible Authorization Using Casbin & PERM (in

https://www.youtube.com/watch?v=OTT84oplR9o
https://www.youtube.com/watch?v=Z5dUxH4PqYM
https://www.youtube.com/watch?v=Z5dUxH4PqYM
https://www.youtube.com/watch?v=mWlPNrCgVdE
https://www.bilibili.com/video/BV1qz4y167XP
https://www.bilibili.com/video/BV13r4y1M7AC
https://www.bilibili.com/video/BV13r4y1M7AC
https://www.jtthink.com/course/132
https://www.jtthink.com/course/play/2706
https://www.bilibili.com/video/BV1Kf4y1U7iJ
https://www.bilibili.com/video/BV1bp4y1a7je
https://www.bilibili.com/video/BV1kz4y1Z7vd
https://www.bilibili.com/video/BV1A541187M4
https://www.bilibili.com/video/BV1uk4y117up
https://www.bilibili.com/video/BV1dK4y1L7xy
https://www.bilibili.com/video/BV1dq4y1Z78g
https://www.bilibili.com/video/BV1X34y1Q7ZH
https://medium.com/wesionary-team/understanding-casbin-with-different-access-control-model-configurations-faebc60f6da5
https://narendraj9.github.io/posts/generalized-authz.html
https://medium.com/silo-blog/designing-a-flexible-permissions-system-with-casbin-f5d97fef17b8
https://medium.com/pragmatic-programmers/authorize-with-access-control-lists-92fbec57a920
https://virgool.io/@a3dho3yn/%DA%A9%D9%86%D8%AA%D8%B1%D9%84-%D8%AF%D8%B3%D8%AA%D8%B1%D8%B3%DB%8C-%D8%A8%D8%A7-casbin-%D9%88-perm-metamodel-sm3vb9c2cowg
https://habr.com/ru/articles/539778/
https://habr.com/ru/articles/539778/
https://habr.com/ru/articles/540454/

Russian)

• Permission management with Casbin (in Chinese)

• Analysis of Casbin (in Chinese)

• Design of System Permissions (in Chinese)

• Casbin: A Permission Engine (in Chinese)

• Implementing ABAC with Casbin (in Chinese)

• Source code analysis of Casbin (in Chinese)

• Permission evaluation with Casbin (in Chinese)

• Casbin: Library of the day for Go (in Chinese)

GoGo JaJavvaa Node.jsNode.js PHPPHP .NET.NET RustRust LuaLua

HTTP & RESTfulHTTP & RESTful

• Basic Role-Based HTTP Authorization in Go with Casbin (or Chinese

translation)

WWatatchercher

• RBAC Distributed Synchronization via Casbin Watcher (in Chinese)

BeegoBeego

• Using Casbin with Beego: 1. Get started and test (in Chinese)

• Using Casbin with Beego: 2. Policy storage (in Chinese)

• Using Casbin with Beego: 3. Policy query (in Chinese)

• Using Casbin with Beego: 4. Policy update (in Chinese)

• Using Casbin with Beego: 5. Policy update (continued) (in Chinese)

GGinin

• Authorization in Golang Projects using Casbin

https://habr.com/ru/articles/540454/
http://www.cnblogs.com/wang_yb/archive/2018/11/20/9987397.html
https://www.cnblogs.com/xiaohunshi/p/10372881.html
https://github.com/xizhibei/blog/issues/101
https://github.com/xizhibei/blog/issues/102
https://www.cnblogs.com/studyzy/p/11380736.html
https://www.cnblogs.com/yjf512/p/12200206.html
https://cloud.tencent.com/developer/article/1534674
https://juejin.cn/post/6844904191257739277
https://zupzup.org/casbin-http-role-auth
https://studygolang.com/articles/12323
https://studygolang.com/articles/12323
https://hongker.github.io/2021/02/19/golang-rbac-watcher/
https://blog.csdn.net/hotqin888/article/details/78460385
https://blog.csdn.net/hotqin888/article/details/78571240
https://blog.csdn.net/hotqin888/article/details/78992250
https://blog.csdn.net/hotqin888/article/details/80032538
https://blog.csdn.net/hotqin888/article/details/80092285
https://medium.com/wesionary-team/authorization-in-golang-projects-using-casbin-f8fad744dae5

• Tutorial: Integrate Gin with Casbin

• Policy enforcements on K8s with Pipeline

• Authentication and authorization in Gin application with JWT and Casbin

• Backend API with Go: 1. Authentication based on JWT (in Chinese)

• Backend API with Go: 2. Authorization based on Casbin (in Chinese)

• Using Go's authorization library Casbin with Gin and GORM (in Japanese)

EchoEcho

• Web authorization with Casbin

IrisIris

• Iris + Casbin: Practice for permission management (in Chinese)

• Learning iris + Casbin from scratch

ArArgo CDgo CD

• Organizational RBAC in Argo CD with Casbin

GSharkGShark

• GShark: Scan for sensitive information in Github easily and effectively (in

Chinese)

SpringBootSpringBoot

• jCasbin: a more light-weight permission management solution (in Chinese)

• Integrating jCasbin with JFinal (in Chinese)

ExprExpressess

• How to Add Role-Based-Access-Control to Your Serverless HTTP API on AWS

KKoaoa

• Authorisation with Casbin and Koa Part 1

https://dev.to/maxwellhertz/tutorial-integrate-gin-with-cabsin-56m0
https://outshift.cisco.com/blog/policy-enforcement-k8s
https://medium.com/@tienbm90/authentication-and-authorization-in-gin-application-with-jwt-and-casbin-a56bbbdec90b
https://studygolang.com/topics/6998
https://studygolang.com/topics/6999
https://web.archive.org/web/20211207015104/https://www.zaneli.com/blog/20181203
http://klotzandrew.com/blog/authorization-with-casbin
https://zxc0328.github.io/posts-cn/casbin-iris/
https://learnku.com/articles/41416
https://argo-cd.readthedocs.io/en/stable/operator-manual/rbac/
https://mp.weixin.qq.com/s?__biz=MzI3MjA3MTY3Mw==&mid=2247483770&idx=1&sn=9f02c2803e1c946e8c23b16ff3eba757&chksm=eb396fecdc4ee6fa2f378e846f354f45acf6e6f540cfd54190e9353df47c7707e3a2aadf714f&token=115330850&lang=zh_CN#rd
https://mp.weixin.qq.com/s?__biz=MzI3MjA3MTY3Mw==&mid=2247483770&idx=1&sn=9f02c2803e1c946e8c23b16ff3eba757&chksm=eb396fecdc4ee6fa2f378e846f354f45acf6e6f540cfd54190e9353df47c7707e3a2aadf714f&token=115330850&lang=zh_CN#rd
https://blog.csdn.net/waynelee0809/article/details/85702551
http://www.jfinal.com/share/842
https://dev.to/matttyler/how-to-add-role-based-access-control-to-your-serverless-http-api-on-aws-17bk
https://dev.to/gerybbg/authorisation-with-casbin-and-koa-part-1-2gh

• Authorisation with Casbin and Koa Part 2

NestNest

• How to Create Role-based Authorization Middleware with Casbin and Nest.js

• nest.js: Casbin RESTful RBAC authorization middleware (Video)

• A Demo App of Attribute-based Access Control in Node.js Based on Casbin

• Multi tenant SaaS starter kit with cqrs graphql microservice architecture

FastifyFastify

• Access Control in Node.js with Fastify and Casbin

• Casbin, Powerful and Efficient ACL for Your Projects

• Using Casbin for authorization in dotnet

• Basic Role-Based HTTP Authorization in Rust with Casbin

• How to use casbin authorization in your rust web-app [Part - 1]

• How to use casbin authorization in your rust web-app [Part - 2]

APISIXAPISIX

• Authorization in APISIX using Casbin

https://dev.to/gerybbg/authorisation-with-casbin-and-koa-part-2-2io5
https://dev.to/dwipr/how-to-create-role-based-authorization-middleware-with-casbin-and-nest-js-52gm
https://www.youtube.com/watch?v=mWlPNrCgVdE
https://github.com/Jarvie8176/casbin-example
https://github.com/juicycleff/ultimate-backend
https://www.nearform.com/blog/access-control-node-js-fastify-and-casbin/
http://phpmagazine.net/2018/11/casbin-powerful-and-efficient-acl-for-your-projects.html
https://krishnamohan.dev/blog/using-casbin-for-authorization-in-dotnet
https://www.zupzup.org/rust-casbin-example/
https://dev.to/smrpn/how-to-use-casbin-authorization-in-your-rust-web-app-part-1-4f8f
https://dev.to/smrpn/how-to-use-casbin-authorization-in-your-rust-web-app-part-2-1bnm
https://medium.com/@rushitote/authorization-in-apisix-using-casbin-59b693669d6d

Understanding HoUnderstanding How Casbinw Casbin
MatMatching Wching Works in Detailorks in Detail
In this post, I will explain the design and implementation of RBAC using the Casbin

library. For a SaaS platform dealing with multiple resource hierarchies and roles

that inherit permissions from higher levels, Casbin provides a performant

alternative to consider.

IntrIntroduction toduction to RBAo RBACC
RBAC is a method of restricting access to resources based on the roles that

individuals hold. To better understand how hierarchical RBAC works, let's take a

look at Azure's RBAC system in the next section and then attempt to implement a

similar system.

https://casbin.org/

Understanding AzurUnderstanding Azure's Hierare's Hierarchicalchical
RBARBACC

There is a role called OwnerOwner for all resources in Azure. Suppose if I have the

OwnerOwner role assigned to me at the subscription level, that means I am the OwnerOwner of

all the resource groups and resources under that subscription. If I have OwnerOwner at

the resource group level, then I am the OwnerOwner of all the resources under that

resource group.

This image shows that I have OwnerOwner access at the subscription level.

When I check the IAM of a Resource Group under this Subscription, you can see

that I have inherited OwnerOwner access from the subscription.

So, this is how Azure's RBAC is hierarchical. Most enterprise software uses

hierarchical RBAC because of the hierarchical nature of the resource levels. In this

tutorial, we'll try to implement a similar system using Casbin.

HoHow Does Casbin Ww Does Casbin Work?ork?
Before diving into the implementation, it is important to understand what Casbin is

and how it functions at a high level. This understanding is necessary because

each Role-Based Access Control (RBAC) system may vary based on specific

requirements. By grasping the workings of Casbin, we can effectively fine-tune

the model.

What is AWhat is ACL?CL?
ACL stands for Access Control List. It is a method in which users are mapped to

actions and actions to resources.

The model definitionThe model definition

Let's consider a simple example of an ACL model.

[request_definition]

r = sub, act, obj

[policy_definition]

p = sub, act, obj

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act

1. The rrequest_definitionequest_definition is the query template of the system. For example, a

request alice, write, data1 can be interpreted as "Can subject Alice

perform the action 'write' on object 'data1'?".

2. The policypolicy_definition_definition is the assignment template of the system. For example,

by creating a policy alice, write, data1 , you are assigning permission to

subject Alice to perform the action 'write' on object 'data1'.

3. The policypolicy_eff_effectect defines the effect of the policy.

4. In the matmatcherschers section, the request is matched with the policy using the

conditions r.sub == p.sub && r.obj == p.obj && r.act == p.act .

NoNow let's tw let's test test the model on the model on the Casbin edithe Casbin editoror

Open the editor and paste the above model in the Model editor.

Paste the following in the Policy editor:

and the following in the Request editor:

The result will be:

p, alice, read, data1

p, bob, write, data2

alice, read, data1

true

https://casbin.org/editor

Visual rVisual reprepresentation of tesentation of the Ahe ACL model, policyCL model, policy, and, and
rrequest matequest matchingching

What is RBAWhat is RBAC?C?
RBAC stands for Role-Based Access Control. In RBAC, a user is assigned a role for

a resource, and a role can contain arbitrary actions. The request then checks if

the user has the permission to perform the action on the resource.

The model definitionThe model definition

Let's consider a simple example RBAC model:

[request_definition]

r = sub, act, obj

[policy_definition]

p = sub, act, obj

1. The rrole_definitionole_definition is a graph relation builder that uses a Graph to compare

the request object with the policy object.

NoNow let's tw let's test test the model on Casbin edithe model on Casbin editoror

Open the editor and paste the above model in the Model editor.

Paste the following in the Policy editor:

and the following in the Request editor:

The result will be:

p, alice, reader, data1

p, bob, owner, data2

g, reader, read

g, owner, read

g, owner, write

alice, read, data1

alice, write, data1

bob, write, data2

bob, read, data2

bob, write, data1

true

false

true

true

false

https://casbin.org/editor

Visual rVisual reprepresentation of tesentation of the RBAhe RBAC model, policyC model, policy, and, and
rrequest matequest matchingching

The g - Rg - Role tole to action mappingo action mapping table has a Graph mapping the role to action. This

Graph can be coded as a list of edges, as shown in the policy which is a common

way of representing a Graph:

INFOINFO

pp indicates a normal policy that can be compared using the ==== operator. gg

is a Graph-based comparison function. You can define multiple Graph

comparators by adding a numerical suffix like g, g2, g3g, g2, g3, ..., ... and so on.

g, reader, read

g, owner, read

g, owner, write

What is HierarWhat is Hierarchical RBAchical RBAC?C?
In Hierarchical RBAC, there are more than one type of resources and there is an

inheritance relationship between the resource types. For example, "subscription"

is one type and "resourceGroup" is another type. A sub1 of type SubscriptionSubscription can

contain multiple resourceGroups (rg1, rg2) of type RResouresourceGrceGroupoup.

Similar to the resource hierarchy, there will be two types of roles and actions:

Subscription roles and actions, and ResourceGroup roles and actions. There is an

arbitrary relationship between the Subscription role and ResourceGroup role. For

example, consider a Subscription Role sub-osub-ownerwner. This role is inherited by a

ResourceGroup Role rrg-og-ownerwner, which means that if I am assigned the sub-osub-ownerwner

role on Subscription sub1sub1, then I automatically also get the rrg-og-ownerwner role on rrg1g1

and rand rg2g2.

The model definitionThe model definition

Let's take a simple example of the HierarHierarchical RBAchical RBACC model:

[request_definition]

r = sub, act, obj

[policy_definition]

p = sub, act, obj

[role_definition]

g = _, _

g2 = _, _

[policy_effect]

e = some(where (p.eft == allow))

1. The rrole_definitionole_definition is a graph relation builder which uses a Graph to compare

the request object with the policy object.

NoNow let's tw let's test test the model on the model on the Casbin edithe Casbin editoror

Open the editor and paste the above model in the Model editor.

Paste the following in the Policy editor:

And paste the following in the Request editor:

p, alice, sub-reader, sub1

p, bob, rg-owner, rg2

// subscription role to subscription action mapping

g, sub-reader, sub-read

g, sub-owner, sub-read

g, sub-owner, sub-write

// resourceGroup role to resourceGroup action mapping

g, rg-reader, rg-read

g, rg-owner, rg-read

g, rg-owner, rg-write

// subscription role to resourceGroup role mapping

g, sub-reader, rg-reader

g, sub-owner, rg-owner

// subscription resource to resourceGroup resource mapping

g2, sub1, rg1

g2, sub2, rg2

alice, rg-read, rg1

https://casbin.org/editor

The result will be:

Visual rVisual reprepresentation of tesentation of the RBAhe RBAC model, policyC model, policy, and, and
rrequest matequest matchingching

The g - Rg - Role tole to (Action, Ro (Action, Role) Mappingole) Mapping table has a graph mapping the role to the

action, role mapping. This graph can be coded as a list of edges, as shown in the

policy, which is a common way of representing a graph:

true

// subscription role to subscription action mapping

g, sub-reader, sub-read

g, sub-owner, sub-read

g, sub-owner, sub-write

// resourceGroup role to resourceGroup action mapping

The g2 - Sub tg2 - Sub to RG Mappingo RG Mapping table has a graph mapping subscription to

resourceGroup:

Subject MatSubject Matching Visual rching Visual reprepresentationesentation

// subscription resource to resourceGroup resource mapping

g2, sub1, rg1

g2, sub2, rg2

Action MatAction Matching Visual rching Visual reprepresentationesentation

Object MatObject Matching Visual rching Visual reprepresentationesentation

INFOINFO

When a request is submitted to Casbin, this matching happens for all the

policies. If at least one policy matches, then the result of the request is

true. If no policy matches the request, then the result is false.

ConclusionConclusion
In this tutorial, we learned about how different authorization models work and how

they can be modeled using Casbin. In the second part of this tutorial, we will

implement this in a demo Spring Boot Application and secure the APIs using

Casbin.

ModelModel

📄📄 Suppor Supportted Modelsed Models

Supported models of Casbin

📄📄 Syntax f Syntax for Modelsor Models

Syntax for Models

📄📄 Eff Effectectoror

The Effector interface in Casbin

📄📄 F Functionsunctions

Using built-in functions or specifying custom functions

📄📄 RBA RBACC

Casbin RBAC usage

📄📄 RBA RBAC witC with Patth Patternern

RBAC with Pattern

📄📄 RBA RBAC witC with Domainsh Domains

Usage of RBAC with domains

📄📄 RBA RBAC witC with Conditionsh Conditions

Usage of RBAC with conditions

📄📄 Casbin RBA Casbin RBAC vs. RBAC vs. RBAC96C96

The Difference Between Casbin RBAC and RBAC96

📄📄 ABA ABACC

ABAC based on Casbin

📄📄 Priority Model Priority Model

Casbin's Priority Model for managing policies with different priorities

📄📄 Super Admin Super Admin

The Super Admin is the administrator of the entire system. It can be used in models such as RBAC, ABAC, and RBAC with domains.

SupporSupportted Modelsed Models
1. AACL (Access ContrCL (Access Control List)ol List)

2. AACL witCL withh superusersuperuser

3. AACL witCL without usershout users: This is especially useful for systems that don't have authentication or

user logins.

4. AACL witCL without rhout resouresourcesces: In some scenarios, the target is a type of resource instead of an

individual resource. Permissions like "write-article" and "read-log" can be used. This

doesn't control access to a specific article or log.

5. RBARBAC (RC (Role-Based Access Controle-Based Access Control)ol)

6. RBARBAC witC with rh resouresource rce rolesoles: Both users and resources can have roles (or groups) at the

same time.

7. RBARBAC witC with domains/th domains/tenantenantss: Users can have different sets of roles for different domains/

tenants.

8. ABAABAC (AC (Attributttribute-Based Access Contre-Based Access Control)ol): Syntax sugar like "resource.Owner" can be used

to get the attribute for a resource.

9. RESTfulRESTful: Supports paths like "/res/*", "/res/:id", and HTTP methods like "GET", "POST",

"PUT", "DELETE".

10. DenDeny-oy-ovverrideerride: Both allow and deny authorizations are supported, where deny overrides

allow.

11. PriorityPriority: The policy rules can be prioritized, similar to firewall rules.

ExamplesExamples

ModelModel Model fileModel file PPolicy fileolicy file

ACL basic_model.conf basic_policy.csv

ACL with

superuser
basic_with_root_model.conf basic_policy.csv

ACL basic_without_users_model.conf basic_without_users_policy.csv

https://en.wikipedia.org/wiki/Access_control_list
https://en.wikipedia.org/wiki/Superuser
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Attribute-Based_Access_Control
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/casbin/casbin/blob/master/examples/basic_model.conf
https://github.com/casbin/casbin/blob/master/examples/basic_policy.csv
https://github.com/casbin/casbin/blob/master/examples/basic_with_root_model.conf
https://github.com/casbin/casbin/blob/master/examples/basic_policy.csv
https://github.com/casbin/casbin/blob/master/examples/basic_without_users_model.conf
https://github.com/casbin/casbin/blob/master/examples/basic_without_users_policy.csv

ModelModel Model fileModel file PPolicy fileolicy file

without

users

ACL

without

resources

basic_without_resources_model.conf basic_without_resources_policy.csv

RBAC rbac_model.conf rbac_policy.csv

RBAC

with

resource

roles

rbac_with_resource_roles_model.conf rbac_with_resource_roles_policy.csv

RBAC

with

domains/

tenants

rbac_with_domains_model.conf rbac_with_domains_policy.csv

ABAC abac_model.conf N/A

RESTful keymatch_model.conf keymatch_policy.csv

Deny-

override
rbac_with_not_deny_model.conf rbac_with_deny_policy.csv

Allow-

and-deny
rbac_with_deny_model.conf rbac_with_deny_policy.csv

Priority priority_model.conf priority_policy.csv

Explicit

Priority
priority_model_explicit priority_policy_explicit.csv

https://github.com/casbin/casbin/blob/master/examples/basic_without_resources_model.conf
https://github.com/casbin/casbin/blob/master/examples/basic_without_resources_policy.csv
https://github.com/casbin/casbin/blob/master/examples/rbac_model.conf
https://github.com/casbin/casbin/blob/master/examples/rbac_policy.csv
https://github.com/casbin/casbin/blob/master/examples/rbac_with_resource_roles_model.conf
https://github.com/casbin/casbin/blob/master/examples/rbac_with_resource_roles_policy.csv
https://github.com/casbin/casbin/blob/master/examples/rbac_with_domains_model.conf
https://github.com/casbin/casbin/blob/master/examples/rbac_with_domains_policy.csv
https://github.com/casbin/casbin/blob/master/examples/abac_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch_policy.csv
https://github.com/casbin/casbin/blob/master/examples/rbac_with_not_deny_model.conf
https://github.com/casbin/casbin/blob/master/examples/rbac_with_deny_policy.csv
https://github.com/casbin/casbin/blob/master/examples/rbac_with_deny_model.conf
https://github.com/casbin/casbin/blob/master/examples/rbac_with_deny_policy.csv
https://github.com/casbin/casbin/blob/master/examples/priority_model.conf
https://github.com/casbin/casbin/blob/master/examples/priority_policy.csv
https://github.com/casbin/casbin/blob/master/examples/priority_model_explicit.conf
https://github.com/casbin/casbin/blob/master/examples/priority_policy_explicit.csv

ModelModel Model fileModel file PPolicy fileolicy file

Subject-

Priority
subject_priority_model.conf subject_priority_policyl.csv

https://github.com/casbin/casbin/blob/master/examples/subject_priority_model.conf
https://github.com/casbin/casbin/blob/master/examples/subject_priority_policy.csv

Syntax fSyntax for Modelsor Models
• A model configuration (CONF) should have at least four sections:

[request_definition] , [policy_definition] , [policy_effect] , and

[matchers] .

• If a model uses Role-Based Access Control (RBAC), it should also include the

[role_definition] section.

• A model configuration (CONF) can contain comments. Comments start with

the # symbol, and everything after the # symbol will be commented out.

RRequest definitionequest definition
The [request_definition] section defines the arguments in the

e.Enforce(...) function.

In this example, sub , obj , and act represent the classic access triple: the

subject (accessing entity), the object (accessed resource), and the action (access

method). However, you can customize your own request format. For example, you

can use sub, act if you don't need to specify a particular resource, or sub,

sub2, obj, act if you have two accessing entities.

[request_definition]

r = sub, obj, act

PPolicy Definitionolicy Definition
The [policy_definition] is the definition for a policy. It defines the meaning of

the policy. For example, we have the following model:

And we have the following policy (if in a policy file):

Each line in a policy is called a policy rule. Each policy rule starts with a policy

type , such as p or p2 . It is used to match the policy definition if there are

multiple definitions. The above policy shows the following binding. The binding

can be used in the matcher.

TIPTIP

The elements in a policy rule are always regarded as strings . If you have

any questions about this, please refer to the discussion at:

https://github.com/casbin/casbin/issues/113

[policy_definition]

p = sub, obj, act

p2 = sub, act

p, alice, data1, read

p2, bob, write-all-objects

(alice, data1, read) -> (p.sub, p.obj, p.act)

(bob, write-all-objects) -> (p2.sub, p2.act)

https://github.com/casbin/casbin/issues/113

PPolicy Effolicy Effectect
[policy_effect] is the definition for the policy effect. It determines whether the

access request should be approved if multiple policy rules match the request. For

example, one rule permits and the other denies.

The above policy effect means that if there's any matched policy rule of allow ,

the final effect is allow (also known as allow-override). p.eft is the effect for a

policy, and it can be either allow or deny . It is optional, and the default value is

allow . Since we didn't specify it above, it uses the default value.

Another example for the policy effect is:

This means that if there are no matched policy rules of deny , the final effect is

allow (also known as deny-override). some means that there exists one matched

policy rule. any means that all matched policy rules (not used here). The policy

effect can even be connected with logical expressions:

This means that there must be at least one matched policy rule of allow , and

[policy_effect]

e = some(where (p.eft == allow))

[policy_effect]

e = !some(where (p.eft == deny))

[policy_effect]

e = some(where (p.eft == allow)) && !some(where (p.eft == deny))

there cannot be any matched policy rule of deny . Therefore, in this way, both

allow and deny authorizations are supported, and the deny overrides.

NONOTETE

Although we designed the syntax of the policy effect as above, the current

implementations only use hard-coded policy effects. This is because we

found that there isn't much need for that level of flexibility. So for now, you

must use one of the built-in policy effects instead of customizing your own.

The supported built-in policy effects are:

PPolicy Effolicy Effectect MeaningMeaning ExampleExample

some(where (p.eft == allow)) allow-override
ACL,

RBAC, etc.

!some(where (p.eft == deny)) deny-override
Deny-

override

some(where (p.eft == allow)) && !some(where

(p.eft == deny))

allow-and-

deny

Allow-and-

deny

priority(p.eft) || deny priority Priority

subjectPriority(p.eft)
priority based

on role

Subject-

Priority

MatMatcherschers
[matchers] is the definition for policy matchers. The matchers are expressions

that define how the policy rules are evaluated against the request.

The above matcher is the simplest and means that the subject, object, and action

in a request should match the ones in a policy rule.

Arithmetic operators like +, -, *, / and logical operators like &&, ||, ! can

be used in matchers.

OrOrder of eder of exprxpressions in matessions in matcherschers

The order of expressions can greatly affect performance. Take a look at the

following example for more details:

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act

const rbac_models = `

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[role_definition]

g = _, _

[policy_effect]

The enforcement time may be very long, up to 6 seconds.

However, if we adjust the order of the expressions in matchers and put more time-

consuming expressions like functions behind, the execution time will be very

short.

Changing the order of expressions in matchers in the above example to:

go test -run ^TestManyRoles$ github.com/casbin/casbin/v2 -v

=== RUN TestManyRoles

rbac_api_test.go:598: RESPONSE abu

/projects/1 GET : true IN: 438.379µs

rbac_api_test.go:598: RESPONSE abu /projects/

2499 GET : true IN: 39.005173ms

rbac_api_test.go:598: RESPONSE jasmine

/projects/1 GET : true IN: 1.774319ms

rbac_api_test.go:598: RESPONSE jasmine /projects/

2499 GET : true IN: 6.164071648s

rbac_api_test.go:600: More than 100 milliseconds for

jasmine /projects/2499 GET : 6.164071648s

rbac_api_test.go:598: RESPONSE jasmine /projects/

2499 GET : true IN: 12.164122ms

--- FAIL: TestManyRoles (6.24s)

FAIL

FAIL github.com/casbin/casbin/v2 6.244s

FAIL

[matchers]

m = r.obj == p.obj && g(r.sub, p.sub) && r.act == p.act

go test -run ^TestManyRoles$ github.com/casbin/casbin/v2 -v

=== RUN TestManyRoles

Multiple Section TMultiple Section Typesypes
If you need multiple policy definitions or multiple matchers, you can use p2 or m2

as examples. In fact, all four sections mentioned above can use multiple types,

and the syntax is r followed by a number, such as r2 or e2 . By default, these

four sections should correspond one-to-one. For example, your r2 section will

only use the m2 matcher to match p2 policies.

You can pass an EnforceContext as the first parameter of the enforce method

to specify the types. The EnforceContext is defined as follows:

GoGo Node.jsNode.js JaJavvaa

EnforceContext{"r2","p2","e2","m2"}

type EnforceContext struct {

RType string

PType string

EType string

MType string

}

const enforceContext = new EnforceContext('r2', 'p2', 'e2',

'm2');

class EnforceContext {

constructor(rType, pType, eType, mType) {

this.pType = pType;

this.eType = eType;

this.mType = mType;

this.rType = rType;

}

Here is an example usage. Please refer to the model and policy. The request is as

follows:

GoGo Node.jsNode.js JaJavvaa

EnforceContext enforceContext = new EnforceContext("2");

public class EnforceContext {

private String pType;

private String eType;

private String mType;

private String rType;

public EnforceContext(String suffix) {

this.pType = "p" + suffix;

this.eType = "e" + suffix;

this.mType = "m" + suffix;

this.rType = "r" + suffix;

}

}

// Pass in a suffix as a parameter to NewEnforceContext, such

as 2 or 3, and it will create r2, p2, etc.

enforceContext := NewEnforceContext("2")

// You can also specify a certain type individually

enforceContext.EType = "e"

// Don't pass in EnforceContext; the default is r, p, e, m

e.Enforce("alice", "data2", "read") // true

// Pass in EnforceContext

e.Enforce(enforceContext, struct{ Age int }{Age: 70}, "/data1",

"read") //false

e.Enforce(enforceContext, struct{ Age int }{Age: 30}, "/data1",

"read") //true

https://github.com/casbin/casbin/blob/master/examples/multiple_policy_definitions_model.conf
https://github.com/casbin/casbin/blob/master/examples/multiple_policy_definitions_policy.csv

// Pass in a suffix as a parameter to NewEnforceContext, such

as 2 or 3, and it will create r2, p2, etc.

const enforceContext = new NewEnforceContext('2');

// You can also specify a certain type individually

enforceContext.eType = "e"

// Don't pass in EnforceContext; the default is r, p, e, m

e.Enforce("alice", "data2", "read") // true

// Pass in EnforceContext

e.Enforce(enforceContext, {Age: 70}, "/data1", "read")

//false

e.Enforce(enforceContext, {Age: 30}, "/data1", "read")

//true

// Pass in a suffix as a parameter to NewEnforceContext, such

as 2 or 3, and it will create r2, p2, etc.

EnforceContext enforceContext = new EnforceContext("2");

// You can also specify a certain type individually

enforceContext.seteType("e");

// Don't pass in EnforceContext; the default is r, p, e, m

e.enforce("alice", "data2", "read"); // true

// Pass in EnforceContext

// TestEvalRule is located in https://github.com/casbin/jcasbin/

blob/master/src/test/java/org/casbin/jcasbin/main/

AbacAPIUnitTest.java#L56

e.enforce(enforceContext, new

AbacAPIUnitTest.TestEvalRule("alice", 70), "/data1", "read");

// false

e.enforce(enforceContext, new

AbacAPIUnitTest.TestEvalRule("alice", 30), "/data1", "read");

// true

Special GrammarSpecial Grammar
You could also use the "in" operator, which is the only operator with a text name.

This operator checks the array on the right-hand side to see if it contains a value

that is equal to the value on the left side. Equality is determined by using the ==

operator, and this library does not check the types between the values. As long as

two values can be cast to interface{} and can still be checked for equality with ==,

they will act as expected. Note that you can use a parameter for the array, but it

must be an []interface{}.

Also refer to rbac_model_matcher_using_in_op, keyget2_model, and

keyget_model.

Example:

ExprExpression Evession Evaluataluatoror
The matcher evaluation in Casbin is implemented by expression evaluators in each

language. Casbin integrates their powers to provide the unified PERM language. In

addition to the model syntax provided here, these expression evaluators may offer

[request_definition]

r = sub, obj

...

[matchers]

m = r.sub.Name in (r.obj.Admins)

e.Enforce(Sub{Name: "alice"}, Obj{Name: "a book", Admins:

[]interface{}{"alice", "bob"}})

https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/examples/rbac_model_matcher_using_in_op.conf
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/examples/keyget2_model.conf
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/examples/keyget_model.conf

extra functionality that might not be supported by another language or

implementation. Please be cautious when using this functionality.

The expression evaluators used by each Casbin implementation are as follows:

ImplementationImplementation LanguageLanguage ExprExpression Evession Evaluataluatoror

Casbin Golang https://github.com/Knetic/govaluate

jCasbin Java https://github.com/killme2008/aviator

Node-Casbin Node.js
https://github.com/donmccurdy/expression-

eval

PHP-Casbin PHP
https://github.com/symfony/expression-

language

PyCasbin Python https://github.com/danthedeckie/simpleeval

Casbin.NET C#
https://github.com/davideicardi/

DynamicExpresso

Casbin4D Delphi

https://github.com/casbin4d/Casbin4D/tree/

master/SourceCode/Common/Third%20Party/

TExpressionParser

casbin-rs Rust https://github.com/jonathandturner/rhai

casbin-cpp C++ https://github.com/ArashPartow/exprtk

NONOTETE

https://github.com/Knetic/govaluate
https://github.com/killme2008/aviator
https://github.com/donmccurdy/expression-eval
https://github.com/donmccurdy/expression-eval
https://github.com/symfony/expression-language
https://github.com/symfony/expression-language
https://github.com/danthedeckie/simpleeval
https://github.com/davideicardi/DynamicExpresso
https://github.com/davideicardi/DynamicExpresso
https://github.com/casbin4d/Casbin4D/tree/master/SourceCode/Common/Third%20Party/TExpressionParser
https://github.com/casbin4d/Casbin4D/tree/master/SourceCode/Common/Third%20Party/TExpressionParser
https://github.com/casbin4d/Casbin4D/tree/master/SourceCode/Common/Third%20Party/TExpressionParser
https://github.com/jonathandturner/rhai
https://github.com/ArashPartow/exprtk

If you encounter a performance issue with Casbin, it is likely caused by the

low efficiency of the expression evaluator. You can address the issue to

Casbin or the expression evaluator directly for advice on speeding up the

performance. For more details, please refer to the Benchmarks section.

EffEffectectoror
The Effect represents the result of a policy rule, and the Effector is the

interface for handling effects in Casbin.

MergeEffects()

The MergeEffects() function is used to merge all matching results collected by

the enforcer into a single decision.

For example:

GoGo

In this example:

• Effect is the final decision that is merged by this function (initialized as

Indeterminate).

• explainIndex is the index of eft (Allow or Deny), and it is initialized as

-1 .

• err is used to check if the effect is supported.

• expr is the string representation of the policy effects.

• effects is an array of effects, which can be Allow , Indeterminate , or

Deny .

Effect, explainIndex, err = e.MergeEffects(expr, effects,

matches, policyIndex, policyLength)

• matches is an array that indicates whether the result matches the policy.

• policyIndex is the index of the policy in the model.

• policyLength is the length of the policy.

The code above illustrates how to pass the parameters to the MergeEffects()

function, and the function will process the effects and matches based on the

expr .

To use the Effector , follow these steps:

GoGo

The basic idea of MergeEffects() is that if the expr can match the results,

indicating that the p_eft is allow , then all effects can be merged. If no deny

rules are matched, then the decision is allow.

NONOTETE

If the expr does not match the condition "priority(p_eft) || deny" ,

and the policyIndex is shorter than policyLength-1 , it will shorshortt-cir-circuitcuit

some effects in the middle.

var e Effector

Effect, explainIndex, err = e.MergeEffects(expr, effects,

matches, policyIndex, policyLength)

FFunctionsunctions
FFunctions in matunctions in matcherschers
You can even specify functions in a matcher to make it more powerful. You can use built-in functions or specify your own

function. The built-in key-matching functions take the following format:

They return a boolean indicating whether the url matches the pattern .

The supported built-in functions are:

FFunctionunction urlurl pattpatternern ExampleExample

keyMatch

a URL path like

/alice_data/

resource1

a URL path or a * pattern like

/alice_data/*
keymatch_model.conf/keymatch_policy.csv

keyMatch2

a URL path like

/alice_data/

resource1

a URL path or a : pattern like

/alice_data/:resource
keymatch2_model.conf/keymatch2_policy.csv

keyMatch3

a URL path like

/alice_data/

resource1

a URL path or a {} pattern like

/alice_data/{resource}

https://github.com/casbin/casbin/blob/

277c1a2b85698272f764d71a94d2595a8d425915/

util/builtin_operators_test.go#L171-L196

keyMatch4

a URL path like

/alice_data/

123/book/123

a URL path or a {} pattern like

/alice_data/{id}/book/{id}

https://github.com/casbin/casbin/blob/

277c1a2b85698272f764d71a94d2595a8d425915/

util/builtin_operators_test.go#L208-L222

keyMatch5

a URL path like

/alice_data/

123/?status=1

a URL path, a {} or * pattern

like /alice_data/{id}/*

https://github.com/casbin/casbin/blob/

1cde2646d10ad1190c0d784c3a1c0e1ace1b5bc9/util/

builtin_operators_test.go#L485-L526

regexMatch any string a regular expression pattern keymatch_model.conf/keymatch_policy.csv

ipMatch
an IP address like

192.168.2.123

an IP address or a CIDR like

192.168.2.0/24
ipmatch_model.conf/ipmatch_policy.csv

globMatch

a path-like path

like

/alice_data/

resource1

a glob pattern like

/alice_data/*

https://github.com/casbin/casbin/blob/

277c1a2b85698272f764d71a94d2595a8d425915/

util/builtin_operators_test.go#L426-L466

For key-getting functions, they usually take three parameters (except keyGet):

bool function_name(string url, string pattern)

https://github.com/casbin/casbin/blob/master/examples/keymatch_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch_policy.csv
https://github.com/casbin/casbin/blob/master/examples/keymatch2_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch2_policy.csv
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L171-L196
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L171-L196
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L171-L196
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L208-L222
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L208-L222
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L208-L222
https://github.com/casbin/casbin/blob/1cde2646d10ad1190c0d784c3a1c0e1ace1b5bc9/util/builtin_operators_test.go#L485-L526
https://github.com/casbin/casbin/blob/1cde2646d10ad1190c0d784c3a1c0e1ace1b5bc9/util/builtin_operators_test.go#L485-L526
https://github.com/casbin/casbin/blob/1cde2646d10ad1190c0d784c3a1c0e1ace1b5bc9/util/builtin_operators_test.go#L485-L526
https://github.com/casbin/casbin/blob/master/examples/keymatch_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch_policy.csv
https://github.com/casbin/casbin/blob/master/examples/ipmatch_model.conf
https://github.com/casbin/casbin/blob/master/examples/ipmatch_policy.csv
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L426-L466
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L426-L466
https://github.com/casbin/casbin/blob/277c1a2b85698272f764d71a94d2595a8d425915/util/builtin_operators_test.go#L426-L466

They will return the value of the key key_name if it matches the pattern, and return "" if nothing is matched.

For example, KeyGet2("/resource1/action", "/:res/action", "res") will return "resource1" , and

KeyGet3("/resource1_admin/action", "/{res}_admin/*", "res") will return "resource1" . As for KeyGet , which takes

two parameters, KeyGet("/resource1/action", "/*) will return "resource1/action" .

FFunctionunction urlurl pattpatternern kkeeyy__namename eexamplexample

keyGet

a URL path

like /proj/

resource1

a URL path or a * pattern

like /proj/*
\ keyget_model.conf/keymatch_policy.csv

keyGet2

a URL path

like /proj/

resource1

a URL path or : pattern like

/prooj/:resource

key name

specified

in the

pattern

keyget2_model.conf/keymatch2_policy.csv

keyGet3

a URL path

like /proj/

res3_admin/

a URL path or {} pattern like

/proj/{resource}_admin/*

key name

specified

in the

pattern

https://github.com/casbin/casbin/blob/

7bd496f94f5a2739a392d333a9aaaa10ae397673/

util/builtin_operators_test.go#L209-L247

See details for the above functions at: https://github.com/casbin/casbin/blob/master/util/builtin_operators_test.go

HoHow tw to add a custo add a customizomized functioned function
First, prepare your function. It takes several parameters and returns a bool:

Then, wrap it with interface{} types:

bool function_name(string url, string pattern, string key_name)

func KeyMatch(key1 string, key2 string) bool {

i := strings.Index(key2, "*")

if i == -1 {

return key1 == key2

}

if len(key1) > i {

return key1[:i] == key2[:i]

}

return key1 == key2[:i]

}

func KeyMatchFunc(args ...interface{}) (interface{}, error) {

name1 := args[0].(string)

name2 := args[1].(string)

https://github.com/casbin/casbin/blob/master/examples/keyget_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch_policy.csv
https://github.com/casbin/casbin/blob/master/examples/keyget2_model.conf
https://github.com/casbin/casbin/blob/master/examples/keymatch2_policy.csv
https://github.com/casbin/casbin/blob/7bd496f94f5a2739a392d333a9aaaa10ae397673/util/builtin_operators_test.go#L209-L247
https://github.com/casbin/casbin/blob/7bd496f94f5a2739a392d333a9aaaa10ae397673/util/builtin_operators_test.go#L209-L247
https://github.com/casbin/casbin/blob/7bd496f94f5a2739a392d333a9aaaa10ae397673/util/builtin_operators_test.go#L209-L247
https://github.com/casbin/casbin/blob/master/util/builtin_operators_test.go

Finally, register the function to the Casbin enforcer:

Now, you can use the function in your model CONF like this:

e.AddFunction("my_func", KeyMatchFunc)

[matchers]

m = r.sub == p.sub && my_func(r.obj, p.obj) && r.act == p.act

RBARBACC
RRole Definitionole Definition
The [role_definition] is used to define the RBAC role inheritance relations.

Casbin supports multiple instances of RBAC systems, where users can have roles

and their inheritance relations, and resources can have roles and their inheritance

relations too. These two RBAC systems won't interfere with each other.

This section is optional. If you don't use RBAC roles in the model, then omit this

section.

The above role definition shows that g is an RBAC system, and g2 is another

RBAC system. _,_ means there are two parties involved in an inheritance relation.

In the most common case, you usually use g alone if you only need roles for

users. You can also use both g and g2 when you need roles (or groups) for both

users and resources. Please see the rbac_model.conf and

rbac_model_with_resource_roles.conf for examples.

Casbin stores the actual user-role mapping (or resource-role mapping if you are

using roles on resources) in the policy. For example:

It means that alice inherits/is a member of the role data2_admin . Here, alice

[role_definition]

g = _, _

g2 = _, _

p, data2_admin, data2, read

g, alice, data2_admin

https://github.com/casbin/casbin/blob/master/examples/rbac_model.conf
https://github.com/casbin/casbin/blob/master/examples/rbac_with_resource_roles_model.conf

can be a user, a resource, or a role. Casbin only recognizes it as a string.

Then, in a matcher, you should check the role as shown below:

It means that the sub in the request should have the role sub in the policy.

NONOTETE

1. Casbin only stores the user-role mapping.

2. Casbin doesn't verify whether a user is a valid user or a role is a valid

role. That should be taken care of by authentication.

3. Do not use the same name for a user and a role inside an RBAC

system, because Casbin recognizes users and roles as strings, and

there's no way for Casbin to know whether you are specifying user

alice or role alice . You can simply solve it by using role_alice .

4. If A has role B , and B has role C , then A has role C . This transitivity

is infinite for now.

TTOKEN NAME CONVENTIONOKEN NAME CONVENTION

Conventionally, the subject token name in the policy definition is sub and

placed at the beginning. Now, Golang Casbin supports customized token

names and places. If the subject token name is sub , the subject token can

be placed at an arbitrary place without any extra action needed. If the

subject token name is not sub , e.SetFieldIndex() for

constant.SubjectIndex should be called after the enforcer is initialized,

regardless of its position.

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

RRole Hierarole Hierarchchyy
Casbin's RBAC supports RBAC1's role hierarchy feature, which means that if

alice has role1 , and role1 has role2 , then alice will also have role2 and

inherit its permissions.

Here, we have a concept called a hierarchy level. So, in this example, the hierarchy

level is 2. For the built-in role manager in Casbin, you can specify the maximum

hierarchy level. The default value is 10. This means that an end user like alice

can only inherit 10 levels of roles.

`subject` here is for sub

[policy_definition]

p = obj, act, subject

e.SetFieldIndex("p", constant.SubjectIndex, 2) // index

starts from 0

ok, err := e.DeleteUser("alice") // without SetFieldIndex,

it will raise an error

// NewRoleManager is the constructor for creating an instance

of the

// default RoleManager implementation.

func NewRoleManager(maxHierarchyLevel int) rbac.RoleManager {

rm := RoleManager{}

rm.allRoles = &sync.Map{}

rm.maxHierarchyLevel = maxHierarchyLevel

rm.hasPattern = false

HoHow tw to Distinguish Ro Distinguish Role frole from User?om User?
Casbin doesn't distinguish between roles and users in its RBAC. They are both

treated as strings. If you only use a single-level RBAC (where a role will never be a

member of another role), you can use e.GetAllSubjects() to get all users and

e.GetAllRoles() to get all roles. They will list all u and all r , respectively, in all

g, u, r rules.

But if you are using a multi-level RBAC (with role hierarchy) and your application

doesn't record whether a name (string) is a user or a role, or you have a user and a

role with the same name, you can add a prefix to the role like role::admin

before passing it to Casbin. This way, you will know if it's a role by checking this

prefix.

HoHow tw to Quero Query Implicit Ry Implicit Roles oroles or
PPermissions?ermissions?
When a user inherits a role or permission via RBAC hierarchy instead of being

directly assigned them in a policy rule, we call this type of assignment "implicit".

To query such implicit relations, you need to use these two APIs:

GetImplicitRolesForUser() and GetImplicitPermissionsForUser() instead

of GetRolesForUser() and GetPermissionsForUser() . For more details,

please see this GitHub issue.

Using PattUsing Pattern Matern Matching in RBAching in RBACC
See RBAC with Pattern

https://github.com/casbin/casbin/issues/137

RRole Managerole Manager
See the Role Managers section for details.

RBARBAC witC with Patth Patternern
Quick StarQuick Startt

• Use pattern in g(_, _) .

• Use pattern with domain.

• Use all patterns.

Just combine the use of both APIs.

As shown above, after you create the enforcer instance, you need to activate

pattern matching via the AddNamedMatchingFunc and

AddNamedDomainMatchingFunc APIs, which determine how the pattern matches.

NONOTETE

If you use the online editor, You can add a pattern matching function by

clicking the "Add Role Matching" button in the lower left corner.

e, _ := NewEnforcer("./example.conf", "./example.csv")

e.AddNamedMatchingFunc("g", "KeyMatch2", util.KeyMatch2)

e.AddNamedDomainMatchingFunc("g", "KeyMatch2",

util.KeyMatch2)

Use pattUse pattern matern matching in RBAching in RBACC
Sometimes, you want certain subjects, objects, or domains/tenants with a specific

pattern to be automatically granted a role. Pattern matching functions in RBAC can

help you do that. A pattern matching function shares the same parameters and

return value as the previous matcher function.

The pattern matching function supports each parameter of g .

We know that normally RBAC is expressed as g(r.sub, p.sub) in a matcher.

Then we can use a policy like:

p, alice, book_group, read

So alice can read all books including book 1 and book 2 . But there can be

thousands of books, and it's very tedious to add each book to the book role (or

group) with one g policy rule.

But with pattern matching functions, you can write the policy with only one line:

Casbin will automatically match /book/1 and /book/2 into the pattern

/book/:id for you. You only need to register the function with the enforcer like:

GoGo Node.jsNode.js

When using a pattern matching function in domains/tenants, you need to register

the function with the enforcer and model.

GoGo Node.jsNode.js

If you don't understand what g(r.sub, p.sub, r.dom) means, please read

rbac-with-domains. In short, g(r.sub, p.sub, r.dom) will check whether the

g, /book/:id, book_group

e.AddNamedMatchingFunc("g", "KeyMatch2", util.KeyMatch2)

await e.addNamedMatchingFunc('g', Util.keyMatch2Func);

e.AddNamedDomainMatchingFunc("g", "KeyMatch2", util.KeyMatch2)

await e.addNamedDomainMatchingFunc('g', Util.keyMatch2Func);

user r.sub has a role p.sub in the domain r.dom . So this is how the matcher

works. You can see the full example here.

Apart from the pattern matching syntax above, we can also use pure domain

pattern.

For example, if we want sub to have access in different domains, domain1 and

domain2 , we can use the pure domain pattern:

In this example, we want alice to read and write data in domain1 and domain2.

Pattern matching * in g makes alice have access to two domains.

By using pattern matching, especially in scenarios that are more complicated and

have a lot of domains or objects to consider, we can implement the

policy_definition in a more elegant and effective way.

p, admin, domain1, data1, read

p, admin, domain1, data1, write

p, admin, domain2, data2, read

p, admin, domain2, data2, write

g, alice, admin, *

g, bob, admin, domain2

https://github.com/casbin/casbin/blob/dbdb6cbe2e7a80863e4951f9ff36da07fef01b75/model_test.go#L278-L307

RBARBAC witC with Domainsh Domains
RRole Definition witole Definition with Domain Th Domain Tenantenantss
The RBAC roles in Casbin can be global or domain-specific. Domain-specific roles

mean that the roles for a user can be different when the user is in different

domains/tenants. This is very useful for large systems like a cloud, as users are

usually in different tenants.

The role definition with domains/tenants should look like this:

The third _ represents the name of the domain/tenant, and this part should not

be changed. Then the policy can be:

This means that the admin role in tenant1 can read data1 . And alice has the

admin role in tenant1 and the user role in tenant2 . Therefore, she can read

data1 . However, since alice is not an admin in tenant2 , she cannot read

data2 .

Then, in a matcher, you should check the role as follows:

[role_definition]

g = _, _, _

p, admin, tenant1, data1, read

p, admin, tenant2, data2, read

g, alice, admin, tenant1

g, alice, user, tenant2

Please refer to the rbac_with_domains_model.conf for examples.

TTOKEN NAME CONVENTIONOKEN NAME CONVENTION

Note: Conventionally, the domain token name in policy definition is dom

and is placed as the second token (sub, dom, obj, act). Now, Golang

Casbin supports customized token names and placement. If the domain

token name is dom , the domain token can be placed at an arbitrary position

without any additional action. If the domain token name is not dom ,

e.SetFieldIndex() for constant.DomainIndex should be called after

the enforcer is initialized, regardless of its position.

[matchers]

m = g(r.sub, p.sub, r.dom) && r.dom == p.dom && r.obj == p.obj

&& r.act == p.act

`domain` here for `dom`

[policy_definition]

p = sub, obj, act, domain

e.SetFieldIndex("p", constant.DomainIndex, 3) // index

starts from 0

users := e.GetAllUsersByDomain("domain1") // without

SetFieldIndex, it will raise an error

https://github.com/casbin/casbin/blob/master/examples/rbac_with_domains_model.conf

RBARBAC witC with Conditionsh Conditions
Conditional RConditional RoleManageroleManager
ConditionalRoleManager supports custom condition functions at the policy

level.

For example, when we need a temporary role policy, we can follow the following

approach:

model.conf

g = _, _, (_, _) uses (_, _) to contain a list of arguments to pass to the

condition function and _ as a parameter placeholder

policy.csv

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[role_definition]

g = _, _, (_, _)

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

Basic UsageBasic Usage

Add a conditional function for the role policy(g type policy) through

AddNamedLinkConditionFunc , and when enforcing is executed, the

corresponding parameters will be automatically obtained and passed in the

conditional function for checking. If the check passes, then the corresponding role

policy(g type policy) is valid, otherwise it is invalid

p, alice, data1, read

p, data2_admin, data2, write

p, data3_admin, data3, read

p, data4_admin, data4, write

p, data5_admin, data5, read

p, data6_admin, data6, write

p, data7_admin, data7, read

p, data8_admin, data8, write

g, alice, data2_admin, 0000-01-01 00:00:00, 0000-01-02 00:00:00

g, alice, data3_admin, 0000-01-01 00:00:00, 9999-12-30 00:00:00

g, alice, data4_admin, _, _

g, alice, data5_admin, _, 9999-12-30 00:00:00

g, alice, data6_admin, _, 0000-01-02 00:00:00

g, alice, data7_admin, 0000-01-01 00:00:00, _

g, alice, data8_admin, 9999-12-30 00:00:00, _

e.AddNamedLinkConditionFunc("g", "alice", "data2_admin",

util.TimeMatchFunc)

e.AddNamedLinkConditionFunc("g", "alice", "data3_admin",

util.TimeMatchFunc)

e.AddNamedLinkConditionFunc("g", "alice", "data4_admin",

util.TimeMatchFunc)

e.AddNamedLinkConditionFunc("g", "alice", "data5_admin",

util.TimeMatchFunc)

CustCustom condition functionsom condition functions

Custom conditional functions need to conform to the following function types

for example:

type LinkConditionFunc = func(args ...string) (bool, error)

// TimeMatchFunc is the wrapper for TimeMatch.

func TimeMatchFunc(args ...string) (bool, error) {

if err := validateVariadicStringArgs(2, args...); err !=

nil {

return false, fmt.Errorf("%s: %s", "TimeMatch", err)

}

return TimeMatch(args[0], args[1])

}

// TimeMatch determines whether the current time is between

startTime and endTime.

// You can use "_" to indicate that the parameter is ignored

func TimeMatch(startTime, endTime string) (bool, error) {

now := time.Now()

if startTime != "_" {

if start, err := time.Parse("2006-01-02 15:04:05",

startTime); err != nil {

return false, err

} else if !now.After(start) {

return false, nil

}

}

if endTime != "_" {

if end, err := time.Parse("2006-01-02 15:04:05",

Conditional RConditional RoleManager witoleManager with domainsh domains
model.conf

policy.csv

[request_definition]

r = sub, dom, obj, act

[policy_definition]

p = sub, dom, obj, act

[role_definition]

g = _, _, _, (_, _)

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = g(r.sub, p.sub, r.dom) && r.dom == p.dom && r.obj == p.obj

&& r.act == p.act

p, alice, data1, read

p, data2_admin, data2, write

p, data3_admin, data3, read

p, data4_admin, data4, write

p, data5_admin, data5, read

p, data6_admin, data6, write

p, data7_admin, data7, read

p, data8_admin, data8, write

g, alice, data2_admin, domain2, 0000-01-01 00:00:00, 0000-01-02

Basic UsageBasic Usage

Add a conditional function for the role policy(g type policy) through

AddNamedDomainLinkConditionFunc , and when enforcing is executed, the

corresponding parameters will be automatically obtained and passed in the

conditional function for checking. If the check passes, then the corresponding role

policy(g type policy) is valid, otherwise it is invalid

e.AddNamedDomainLinkConditionFunc("g", "alice", "data2_admin",

"domain2", util.TimeMatchFunc)

e.AddNamedDomainLinkConditionFunc("g", "alice", "data3_admin",

"domain3", util.TimeMatchFunc)

e.AddNamedDomainLinkConditionFunc("g", "alice", "data4_admin",

"domain4", util.TimeMatchFunc)

e.AddNamedDomainLinkConditionFunc("g", "alice", "data5_admin",

"domain5", util.TimeMatchFunc)

e.AddNamedDomainLinkConditionFunc("g", "alice", "data6_admin",

"domain6", util.TimeMatchFunc)

e.AddNamedDomainLinkConditionFunc("g", "alice", "data7_admin",

"domain7", util.TimeMatchFunc)

e.AddNamedDomainLinkConditionFunc("g", "alice", "data8_admin",

"domain8", util.TimeMatchFunc)

e.enforce("alice", "domain1", "data1", "read") //

except: true

e.enforce("alice", "domain2", "data2", "write") //

except: false

e.enforce("alice", "domain3", "data3", "read") //

except: true

e.enforce("alice", "domain4", "data4", "write") //

except: true

e.enforce("alice", "domain5", "data5", "read") //

except: true

CustCustom condition functionsom condition functions

Like the basic Conditional RoleManager , custom functions are supported, and

there is no difference in use.

Note that DomainMatchingFunc , MatchingFunc , and LinkConditionFunc are at

different levels and are used in different situations.

Casbin RBACasbin RBAC vs. RBAC vs. RBAC96C96
Casbin RBACasbin RBAC and RBAC and RBAC96C96
In this document, we will compare Casbin RBAC with RBAC96.

Casbin RBAC supports nearly all the features of RBAC96 and adds new features

on top of that.

RBARBACC

VVersionersion

SupporSupportt

LeLevvelel
DescriptionDescription

RBAC0
Fully

Supported

RBAC0 is the basic version of RBAC96. It clarifies

the relationship between Users, Roles, and

Permissions.

RBAC1
Fully

Supported

RBAC1 adds role hierarchies on top of RBAC0. This

means that if alice has role1 , role1 has

role2 , then alice will also have role2 and

inherit its permissions.

RBAC2

Mutually

Exclusive

Handling

Supported

(like this)

RBAC2 adds constraints on RBAC0. This allows

RBAC2 to handle mutually exclusive policies.

However, quantitative limits are not supported.

RBAC3
Mutually

Exclusive

RBAC3 is a combination of RBAC1 and RBAC2. It

supports role hierarchies and constraints found in

https://profsandhu.com/cs6393_s12/lecture-rbac96.pdf

RBARBACC

VVersionersion

SupporSupportt

LeLevvelel
DescriptionDescription

Handling

Supported

(like this)

RBAC1 and RBAC2. However, quantitative limits are

not supported.

The DiffThe Differerence Betwence Between Casbin RBAeen Casbin RBACC
and RBAand RBAC96C96

1. In Casbin, the distinction between User and Role is not as clear as in RBAC96.

In Casbin, both the User and the Role are treated as strings. For example,

consider the following policy file:

If you call the method GetAllSubjects() using an instance of the Casbin

Enforcer:

the return value will be:

p, admin, book, read

p, alice, book, read

g, amber, admin

e.GetAllSubjects()

[admin alice]

This is because in Casbin, subjects include both Users and Roles.

However, if you call the method GetAllRoles() :

the return value will be:

From this, you can see that there is a distinction between Users and Roles in

Casbin, but it is not as sharp as in RBAC96. Of course, you can add a prefix to

your policies such as user::alice and role::admin to clarify their

relationships.

2. Casbin RBAC provides more permissions than RBAC96.

RBAC96 defines only 7 permissions: read, write, append, execute, credit,

debit, and inquiry.

However, in Casbin, we treat permissions as strings. This allows you to create

permissions that better suit your needs.

3. Casbin RBAC supports domains.

In Casbin, you can perform authorizations based on domains. This feature

makes your Access Control Model more flexible.

e.GetAllRoles()

[admin]

ABAABACC
What is tWhat is the ABAhe ABAC model?C model?
ABAC stands for Attribute-Based Access Control. It allows you to control access

by using the attributes (properties) of the subject, object, or action instead of

using the string values themselves. You may have heard of a complicated ABAC

access control language called XACML. Casbin's ABAC, on the other hand, is

much simpler. In Casbin's ABAC, you can use structs or class instances instead of

strings for model elements.

Let's take a look at the official ABAC example:

In the matcher, we use r.obj.Owner instead of r.obj . The r.obj passed in the

Enforce() function will be a struct or class instance rather than a string. Casbin

will use reflection to retrieve the obj member variable in that struct or class for

you.

Here is a definition for the r.obj struct or class:

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = r.sub == r.obj.Owner

If you want to pass parameters to the enforcer through JSON, you need to enable

the function with e.EnableAcceptJsonRequest(true) .

For example:

NONOTETE

Enabling the function of accepting JSON parameters may result in a

performance drop of 1.1 to 1.5 times.

HoHow tw to use ABAo use ABAC?C?
To use ABAC, you need to do two things:

1. Specify the attributes in the model matcher.

2. Pass in the struct or class instance for the element as an argument to

Casbin's Enforce() function.

type testResource struct {

Name string

Owner string

}

e, _ := NewEnforcer("examples/abac_model.conf")

e.EnableAcceptJsonRequest(true)

data1Json := `{ "Name": "data1", "Owner": "bob"}`

ok, _ := e.Enforce("alice", data1Json, "read")

DDANGERANGER

Currently, only request elements like r.sub , r.obj , r.act , and so on

support ABAC. You cannot use it on policy elements like p.sub because

there is no way to define a struct or class in Casbin's policy.

TIPTIP

You can use multiple ABAC attributes in a matcher. For example: m =

r.sub.Domain == r.obj.Domain .

TIPTIP

If you need to use a comma in a policy that conflicts with CSV's separator,

you can escape it by surrounding the statement with quotation marks. For

example, "keyMatch("bob", r.sub.Role)" will not be split.

Scaling tScaling the model fhe model for compleor complex and larx and largege
numbers of ABAnumbers of ABAC rulesC rules
The above implementation of the ABAC model is simple at its core. However, in

many cases, the authorization system requires a complex and large number of

ABAC rules. To accommodate this requirement, it is recommended to add the

rules in the policy instead of the model. This can be done by introducing an

eval() functional construct. Here is an example:

This is the definition of the CONF file used to define the ABAC model.

[request_definition]

In this example, p.sub_rule is a struct or class (user-defined type) that contains

the necessary attributes to be used in the policy.

This is the policy that is used against the model for Enforcement . Now, you can

use the object instance passed to eval() as a parameter to define certain ABAC

constraints.

p, r.sub.Age > 18, /data1, read

p, r.sub.Age < 60, /data2, write

Priority ModelPriority Model
Casbin supports loading policies with priority.

Load PLoad Policy witolicy with Implicit Priorityh Implicit Priority
It's quite simple: the order determines the priority; policies that appear earlier have

higher priority.

model.conf:

Load PLoad Policy witolicy with Explicit Priorityh Explicit Priority
Also see: casbin#550

A smaller priority value indicates a higher priority. If there's a non-numerical

character in the priority, it will be placed last instead of throwing an error.

TTOKEN NAME CONVENTIONOKEN NAME CONVENTION

The conventionally used priority token name in the policy definition is

"priority". To use a custom one, you need to invoke e.SetFieldIndex()

and reload the policies (see the full example on TestCustomizedFieldIndex).

model.conf:

[policy_effect]

e = priority(p.eft) || deny

https://github.com/casbin/casbin/issues/550
https://github.com/casbin/casbin/pull/1044

Golang code example:

Currently, explicit priority only supports AddPolicy & AddPolicies . If

UpdatePolicy has been called, you shouldn't change the priority attribute.

model.conf:

[policy_definition]

p = customized_priority, sub, obj, act, eft

e, _ := NewEnforcer("./example/

priority_model_explicit_customized.conf",

"./example/

priority_policy_explicit_customized.csv")

// Due to the customized priority token, the enforcer

fails to handle the priority.

ok, err := e.Enforce("bob", "data2", "read") // the result

will be `true, nil`

// Set PriorityIndex and reload

e.SetFieldIndex("p", constant.PriorityIndex, 0)

err := e.LoadPolicy()

if err != nil {

log.Fatalf("LoadPolicy: %v", err)

}

ok, err := e.Enforce("bob", "data2", "read") // the result

will be `false, nil`

[request_definition]

r = sub, obj, act

[policy_definition]

p = priority, sub, obj, act, eft

policy.csv

request:

Load PLoad Policy witolicy with Priority Based on Rh Priority Based on Roleole
and User Hierarand User Hierarchchyy
The inherited structure of roles and users can only be multiple trees, not graphs. If

a user has multiple roles, you have to make sure the user has the same level in

different trees. If two roles have the same level, the policy (associated with the

role) that appeared earlier has higher priority. For more details, also see

p, 10, data1_deny_group, data1, read, deny

p, 10, data1_deny_group, data1, write, deny

p, 10, data2_allow_group, data2, read, allow

p, 10, data2_allow_group, data2, write, allow

p, 1, alice, data1, write, allow

p, 1, alice, data1, read, allow

p, 1, bob, data2, read, deny

g, bob, data2_allow_group

g, alice, data1_deny_group

alice, data1, write --> true // because `p, 1, alice, data1,

write, allow` has the highest priority

bob, data2, read --> false

bob, data2, write --> true // because bob has the role of

`data2_allow_group` which has the right to write data2, and

there's no deny policy with higher priority

casbin#833 and casbin#831.

model.conf:

policy.csv

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act, eft

[role_definition]

g = _, _

[policy_effect]

e = subjectPriority(p.eft) || deny

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

p, root, data1, read, deny

p, admin, data1, read, deny

p, editor, data1, read, deny

p, subscriber, data1, read, deny

p, jane, data1, read, allow

p, alice, data1, read, allow

g, admin, root

g, editor, admin

g, subscriber, admin

https://github.com/casbin/casbin/pull/833
https://github.com/casbin/casbin/issues/831

Request:

The role hierarchy looks like this:

The priority automatically looks like this:

jane, data1, read --> true // because jane is at the bottom,

her priority is higher than that of editor, admin, and root

alice, data1, read --> true

role: root

└─ role: admin

├─ role editor

│ └─ user: jane

│

└─ role: subscriber

└─ user: alice

role: root # auto priority: 30

└─ role: admin # auto priority: 20

├─ role: editor # auto priority: 10

└─ role: subscriber # auto priority: 10

Super AdminSuper Admin
The Super Admin is the administrator of the entire system. It can be used in

models such as RBAC, ABAC, and RBAC with domains. The detailed example is as

follows:

This example illustrates that, with the defined request_definition ,

policy_definition , policy_effect , and matchers , Casbin determines

whether the request can match the policy. One important aspect is checking if the

sub is root. If the judgment is correct, authorization is granted, and the user has

permission to perform all actions.

Similar to the root user in Linux systems, being authorized as root grants access

to all files and settings. If we want a sub to have full access to the entire system,

we can assign it the role of Super Admin, granting the sub permission to perform

all actions.

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act || r.sub

== "root"

StStorageorage

📄📄 Model St Model Storageorage

Model storage

📄📄 P Policy Stolicy Storageorage

Policy Storage

📄📄 P Policy Subset Loadingolicy Subset Loading

Loading filtered policies

Model StModel Storageorage
Unlike the policy, the model can only be loaded, it cannot be saved. We believe

that the model is not a dynamic component and should not be modified at

runtime, so we have not implemented an API to save the model into storage.

However, there is good news. We provide three equivalent ways to load a model,

either statically or dynamically:

Load model frLoad model from .CONF fileom .CONF file
This is the most common way to use Casbin. It is easy to understand for

beginners and convenient for sharing when you need help from the Casbin team.

The content of the .CONF file examples/rbac_model.conf is as follows:

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[role_definition]

g = _, _

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

https://github.com/casbin/casbin/blob/master/examples/rbac_model.conf

Then you can load the model file as follows:

Load model frLoad model from codeom code
The model can be initialized dynamically from code instead of using a .CONF file.

Here's an example for the RBAC model:

e := casbin.NewEnforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv")

import (

"github.com/casbin/casbin/v2"

"github.com/casbin/casbin/v2/model"

"github.com/casbin/casbin/v2/persist/file-adapter"

)

// Initialize the model from Go code.

m := model.NewModel()

m.AddDef("r", "r", "sub, obj, act")

m.AddDef("p", "p", "sub, obj, act")

m.AddDef("g", "g", "_, _")

m.AddDef("e", "e", "some(where (p.eft == allow))")

m.AddDef("m", "m", "g(r.sub, p.sub) && r.obj == p.obj && r.act

== p.act")

// Load the policy rules from the .CSV file adapter.

// Replace it with your adapter to avoid using files.

a := fileadapter.NewAdapter("examples/rbac_policy.csv")

// Create the enforcer.

e := casbin.NewEnforcer(m, a)

Load model frLoad model from stringom string
Alternatively, you can load the entire model text from a multi-line string. The

advantage of this approach is that you do not need to maintain a model file.

import (

"github.com/casbin/casbin/v2"

"github.com/casbin/casbin/v2/model"

)

// Initialize the model from a string.

text :=

`

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[role_definition]

g = _, _

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

`

m, _ := model.NewModelFromString(text)

// Load the policy rules from the .CSV file adapter.

// Replace it with your adapter to avoid using files.

a := fileadapter.NewAdapter("examples/rbac_policy.csv")

PPolicy Stolicy Storageorage
In Casbin, the policy storage is implemented as an adapter.

Loading policy frLoading policy from a .CSV fileom a .CSV file
This is the most common way to use Casbin. It is easy to understand for

beginners and convenient for sharing when you ask the Casbin team for help.

The content of the .CSV file examples/rbac_policy.csv is as follows:

NONOTETE

If your file contains commas, you should wrap them in double quotes. For

example:

If your file contains commas and double quotes, you should enclose the

field in double quotes and double any embedded double quotes.

p, alice, data1, read

p, bob, data2, write

p, data2_admin, data2, read

p, data2_admin, data2, write

g, alice, data2_admin

p, alice, "data1,data2", read --correct

p, alice, data1,data2, read --incorrect (the whole

phrase "data1,data2" should be wrapped in double quotes)

https://github.com/casbin/casbin/blob/master/examples/rbac_policy.csv

Related issue: casbin#886

AdaptAdapter APIer API

MetMethodhod TTypeype DescriptionDescription

LoadPolicy() basic Load all policy rules from the storage

SavePolicy() basic Save all policy rules to the storage

AddPolicy() optional Add a policy rule to the storage

RemovePolicy() optional Remove a policy rule from the storage

RemoveFilteredPolicy() optional
Remove policy rules that match the filter

from the storage

Database StDatabase Storage Forage Formatormat
YYour policy fileour policy file

p, alice, data, "r.act in (""get"", ""post"")" --

correct

p, alice, data, "r.act in ("get", "post")" --

incorrect (you should use "" to escape "")

https://github.com/casbin/casbin/issues/886

CorrCorresponding database structuresponding database structure (such as MySQL)e (such as MySQL)

idid ptypeptype v0v0 v1v1 v2v2 v3v3 v4v4 v5v5

1 p data2_admin data2 read

2 p data2_admin data2 write

3 g alice admin

Meaning of each columnMeaning of each column

• id : The primary key in the database. It does not exist as part of the casbin

policy . The way it is generated depends on the specific adapter.

• ptype : It corresponds to p , g , g2 , etc.

• v0-v5 : The column names have no specific meaning and correspond to the

values in the policy csv from left to right. The number of columns depends

on how many you define yourself. In theory, there can be an infinite number of

columns, but generally only 66 columns are implemented in the adapter. If this

is not enough for you, please submit an issue to the corresponding adapter

repository.

AdaptAdapter Detailser Details
For more details about the use of the adapter API and database table structure

p, data2_admin, data2, read

p, data2_admin, data2, write

g, alice, admin

design, please visit: /docs/adapters

PPolicy Subset Loadingolicy Subset Loading
Some adapters support filtered policy management. This means that the policy

loaded by Casbin is a subset of the policy stored in the database based on a given

filter. This allows for efficient policy enforcement in large, multi-tenant

environments where parsing the entire policy becomes a performance bottleneck.

To use filtered policies with a supported adapter, simply call the

LoadFilteredPolicy method. The valid format for the filter parameter depends

on the adapter used. To prevent accidental data loss, the SavePolicy method is

disabled when a filtered policy is loaded.

For example, the following code snippet uses the built-in filtered file adapter and

the RBAC model with domains. In this case, the filter limits the policy to a single

domain. Any policy lines for domains other than "domain1" are omitted from the

loaded policy:

import (

"github.com/casbin/casbin/v2"

fileadapter "github.com/casbin/casbin/v2/persist/file-

adapter"

)

enforcer, _ := casbin.NewEnforcer()

adapter := fileadapter.NewFilteredAdapter("examples/

rbac_with_domains_policy.csv")

enforcer.InitWithAdapter("examples/

rbac_with_domains_model.conf", adapter)

filter := &fileadapter.Filter{

P: []string{"", "domain1"},

There is another method that supports the subset loading feature:

LoadIncrementalFilteredPolicy . LoadIncrementalFilteredPolicy is similar

to LoadFilteredPolicy , but it does not clear the previously loaded policy. It only

appends the filtered policy to the existing policy.

ScenariosScenarios

📄📄 Data P Data Permissionsermissions

Solutions for Data Permissions

📄📄 Menu P Menu Permissionsermissions

Example for Menu Permissions

Data PData Permissionsermissions
We have two solutions for data permissions (filtering): using implicit assignment

APIs or using the BatchEnforce() API.

11. Quer. Query Implicit Ry Implicit Roles or Poles or Permissionsermissions

When a user inherits a role or permission via an RBAC hierarchy instead of being

directly assigned them in a policy rule, we refer to this type of assignment as

"implicit". To query such implicit relations, you need to use the following two APIs:

GetImplicitRolesForUser() and GetImplicitPermissionsForUser() ,

instead of GetRolesForUser() and GetPermissionsForUser() . For more

details, please refer to this GitHub issue.

2. Use2. Use BatchEnforce()

BatchEnforce() enforces each request and returns the results in a boolean

array.

For example:

GoGo Node.jsNode.js JaJavvaa

boolArray, err := e.BatchEnforce(requests)

const boolArray = await e.batchEnforce(requests);

List<Boolean> boolArray = e.batchEnforce(requests);

https://github.com/casbin/casbin/issues/137

Menu PMenu Permissionsermissions
We begin by introducing a Spring Boot example featuring a menu system. This

example leverages jCasbin to manage menu permissions. Ultimately, it aims to

abstract a middleware, specifically for menu permissions, which could be

extended to other languages supported by Casbin, such as Go and Python.

11. Configuration Files. Configuration Files

You need to set up role and permission management in the policy.csv file,

along with the parent-child relationships between menu items. For more details,

please refer to this GitHub repo.

11..1 Ov1 Overerviewview

Using policy.csv , you can flexibly configure role permissions and menu

structures for fine-grained access control. This configuration file defines access

permissions for different roles on various menu items, associations between users

and roles, and the hierarchical relationships between menu items.

11.2 P.2 Permission Definitions (Permission Definitions (Policies)olicies)

• PPolicy Rulesolicy Rules: Policies are defined with a p prefix, specifying roles (sub) and

their permissions (act) on menu items (obj), along with the rule's effect

(eft), where allow indicates permission is granted, and deny indicates it is

denied.

Examples:

• p, ROLE_ROOT, SystemMenu, read, allow means the ROLE_ROOT role has

read access to the SystemMenu menu item.

https://github.com/jcasbin/jcasbin-menu-permission

• p, ROLE_ROOT, UserMenu, read, deny means the ROLE_ROOT role is

denied read access to the UserMenu menu item.

11..3 R3 Roles and User Associationsoles and User Associations

• RRole Inheritanceole Inheritance: User-role relationships and role hierarchies are defined with

a g prefix. This allows users to inherit permissions from one or multiple roles.

Examples:

• g, user, ROLE_USER means the user user is assigned the ROLE_USER role.

• g, ROLE_ADMIN, ROLE_USER means ROLE_ADMIN inherits permissions from

ROLE_USER .

11.4 Menu It.4 Menu Item Hierarem Hierarchchyy

• Menu RMenu Relationshipselationships: Parent-child relationships between menu items are

defined with a g2 prefix, aiding in the construction of a menu's structure.

Examples:

• g2, UserSubMenu_allow, UserMenu indicates UserSubMenu_allow is a

submenu of UserMenu .

• g2, (NULL), SystemMenu indicates SystemMenu has no submenu item,

meaning it is a top-level menu item.

11..5 Menu P5 Menu Permission Inheritance and Defermission Inheritance and Default Rulesault Rules

When managing menu permissions with jCasbin, the permission relationship

between parent and child menus follows specific inheritance rules, with two

important default rules:

Inheritance of ParInheritance of Parent Menu Pent Menu Permissionsermissions:

If a parent menu is explicitly granted allow permission, all its submenus also

default to allow permission unless specifically marked as deny . This means

once a parent menu is accessible, its submenus are also accessible by default.

Handling ParHandling Parent Menus Witent Menus Without Dirhout Direct Pect Permission Settingsermission Settings:

If a parent menu has no direct permission settings (neither explicitly allowed nor

denied) but has at least one submenu explicitly granted allow permission, then

the parent menu is implicitly considered to have allow permission. This ensures

users can navigate to these submenus.

11..6 Special P6 Special Permission Inheritance Rulesermission Inheritance Rules

Regarding the inheritance of permissions between roles, especially in scenarios

involving deny permissions, the following rules must be followed to ensure

system security and precise control of permissions:

Distinction BetwDistinction Between Explicit and Defeen Explicit and Default Denialsault Denials:

If a role, such as ROLE_ADMIN , is explicitly denied access to a menu item, such as

AdminSubMenu_deny (marked as deny), then even if this role is inherited by

another role (e.g., ROLE_ROOT), the inheriting role is not permitted access to the

denied menu item. This ensures explicit security policies are not bypassed due to

role inheritance.

Inheritance of DefInheritance of Default Denial Pault Denial Permissionsermissions:

Conversely, if a role's denial of access to a menu item (e.g., UserSubMenu_deny)

is default (not explicitly marked as deny , but because it was not explicitly granted

allow), then when this role is inherited by another role (e.g., ROLE_ADMIN), the

inheriting role may override the default deny status, allowing access to these

menu items.

11..7 Example Description7 Example Description

policy:

MenuNameMenuName ROLE_ROOROLE_ROOTT ROLE_ADMINROLE_ADMIN ROLE_ROLE_USERUSER

SystemMenu ✅ ❌ ❌

UserMenu ❌ ✅ ❌

UserSubMenu_allow ❌ ✅ ✅

p, ROLE_ROOT, SystemMenu, read, allow

p, ROLE_ROOT, AdminMenu, read, allow

p, ROLE_ROOT, UserMenu, read, deny

p, ROLE_ADMIN, UserMenu, read, allow

p, ROLE_ADMIN, AdminMenu, read, allow

p, ROLE_ADMIN, AdminSubMenu_deny, read, deny

p, ROLE_USER, UserSubMenu_allow, read, allow

g, user, ROLE_USER

g, admin, ROLE_ADMIN

g, root, ROLE_ROOT

g, ROLE_ADMIN, ROLE_USER

g2, UserSubMenu_allow, UserMenu

g2, UserSubMenu_deny, UserMenu

g2, UserSubSubMenu, UserSubMenu_allow

g2, AdminSubMenu_allow, AdminMenu

g2, AdminSubMenu_deny, AdminMenu

g2, (NULL), SystemMenu

MenuNameMenuName ROLE_ROOROLE_ROOTT ROLE_ADMINROLE_ADMIN ROLE_ROLE_USERUSER

UserSubSubMenu ❌ ✅ ✅

UserSubMenu_deny ❌ ✅ ❌

AdminMenu ✅ ✅ ❌

AdminSubMenu_allow ✅ ✅ ❌

AdminSubMenu_deny ✅ ❌ ❌

2. Menu P2. Menu Permission Contrermission Controlol

The list of all menu items accessible by a given username can be identified

through the findAccessibleMenus() function available in the MenuService. To

check whether a specific user has the rights to access a designated menu item,

the checkMenuAccess() method can be utilized. This approach ensures that

menu permissions are effectively controlled, leveraging jCasbin's capabilities to

manage access rights efficiently.

https://github.com/jcasbin/jcasbin-menu-permission/blob/master/src/main/java/org/casbin/service/MenuService.java

ExtExtensionsensions

📄📄 Enf Enfororcerscers

The Enforcer is the main structure in Casbin that acts as an interface for users to perform operations on policy rules and models.

📄📄 Adapt Adaptersers

Supported adapters and usage

📄📄 W Watatcherschers

Maintaining consistency between multiple Casbin enforcer instances

📄📄 Dispat Dispatcherschers

Dispatchers provide a way to synchronize incremental changes of policy.

📄📄 R Role Managersole Managers

The role manager is used to manage the RBAC role hierarchy in Casbin.

📄📄 Middlewar Middlewareses

Casbin middlewares

📄📄 GraphQL Middlewar GraphQL Middlewareses

Authorization for GraphQL endpoints

📄📄 Cloud Nativ Cloud Native Middleware Middlewareses

Cloud Native Middlewares

EnfEnfororcerscers
The Enforcer is the main structure in Casbin. It acts as an interface for users to

perform operations on policy rules and models.

SupporSupportted Enfed Enfororcerscers
A complete list of Casbin enforcers is provided below. Any 3rd-party contribution

on a new enforcer is welcomed. Please inform us, and we will add it to this list :)

GoGo PytPythonhon

EnfEnfororcercer AutAuthorhor DescriptionDescription

Enforcer Casbin

The Enforcer is the basic structure for

users to interact with Casbin policies and

models. You can find more details about

the Enforcer API here.

CachedEnforcer Casbin

The CachedEnforcer is based on the

Enforcer and supports caching the

evaluation result of a request in memory

using a map. It provides the ability to

clear caches within a specified expiration

time. Moreover, it guarantees thread

safety with a Read-Write lock. You can

use EnableCache to enable caching of

evaluation results (default is enabled).

https://github.com/casbin/casbin/blob/master/enforcer.go
https://github.com/casbin/casbin/blob/master/enforcer_cached.go

EnfEnfororcercer AutAuthorhor DescriptionDescription

The other API methods of

CachedEnforcer are the same as

Enforcer .

DistributedEnforcer Casbin

The DistributedEnforcer supports

multiple instances in distributed clusters.

It wraps the SyncedEnforcer for the

dispatcher. You can find more details

about the dispatcher here.

SyncedEnforcer Casbin

The SyncedEnforcer is based on the

Enforcer and provides synchronized

access. It is thread-safe.

SyncedCachedEnforcer Casbin

The SyncedCachedEnforcer wraps the

Enforcer and provides decision sync

cache.

EnfEnfororcercer AutAuthorhor DescriptionDescription

Enforcer Casbin

The Enforcer is the basic structure for users

to interact with Casbin policies and models.

You can find more details about the

Enforcer API here.

DistributedEnforcer Casbin

The DistributedEnforcer supports

multiple instances in distributed clusters. It

wraps the SyncedEnforcer for the

https://github.com/casbin/casbin/blob/master/enforcer_distributed.go
https://github.com/casbin/casbin/blob/master/enforcer_synced.go
https://github.com/casbin/casbin/blob/master/enforcer_cached_synced.go
https://github.com/casbin/pycasbin/blob/master/casbin/enforcer.py
https://github.com/casbin/pycasbin/blob/master/casbin/distributed_enforcer.py

EnfEnfororcercer AutAuthorhor DescriptionDescription

dispatcher. You can find more details about

the dispatcher here.

SyncedEnforcer Casbin

The SyncedEnforcer is based on the

Enforcer and provides synchronized

access. It is thread-safe.

AsyncEnforcer Casbin The AsyncEnforcer provides async API.

FastEnforcer Casbin

The FastEnforcer uses a new model which

is 50x faster than the normal model. You can

find more here

https://github.com/casbin/pycasbin/blob/master/casbin/synced_enforcer.py
https://github.com/casbin/pycasbin/blob/master/casbin/async_enforcer.py
https://github.com/casbin/pycasbin/blob/master/casbin/fast_enforcer.py
https://github.com/wakemaster39/fastbin

AdaptAdaptersers
In Casbin, the policy storage is implemented as an adapter (aka middleware for Casbin). A Casbin

user can use an adapter to load policy rules from a storage (aka LoadPolicy()), or save policy rules

to it (aka SavePolicy()). To keep light-weight, we don't put adapter code in the main library.

SupporSupportted adapted adaptersers
A complete list of Casbin adapters is provided as below. Any 3rd-party contribution on a new

adapter is welcomed, please inform us and we will put it in this list:

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust RubRubyy SwiftSwift LuaLua

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File

Adapter

(built-in)

File Casbin ❌
For .CSV (Comma-Separated Values)

files

Filtered File

Adapter

(built-in)

File @faceless-saint ❌

For .CSV (Comma-Separated Values)

files with policy subset loading

support

SQL

Adapter
SQL @Blank-Xu ✅

MySQL, PostgreSQL, SQL Server,

SQLite3 are supported in master

branch and Oracle is supported in

oracle branch by database/sql

Xorm

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, TiDB, SQLite,

SQL Server, Oracle are supported by

Xorm

GORM

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, Sqlite3, SQL

Server are supported by GORM

https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/faceless-saint
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/Blank-Xu/sql-adapter
https://github.com/Blank-Xu/sql-adapter
https://github.com/Blank-Xu
https://github.com/casbin/xorm-adapter
https://github.com/casbin/xorm-adapter
https://github.com/go-xorm/xorm/
https://github.com/casbin/gorm-adapter
https://github.com/casbin/gorm-adapter
https://github.com/go-gorm/gorm

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

GORM

Adapter Ex
ORM Casbin ✅

MySQL, PostgreSQL, Sqlite3, SQL

Server are supported by GORM

Ent Adapter ORM Casbin ✅

MySQL, MariaDB, PostgreSQL,

SQLite, Gremlin-based graph

databases are supported by ent

ORM

Beego ORM

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, Sqlite3 are

supported by Beego ORM

SQLX

Adapter
ORM @memwey ✅

MySQL, PostgreSQL, SQLite, Oracle

are supported by SQLX

Sqlx

Adapter
ORM @Blank-Xu ✅

MySQL, PostgreSQL, SQL Server,

SQLite3 are supported in master

branch and Oracle is supported in

oracle branch by sqlx

GF ORM

Adapter
ORM @vance-liu ✅

MySQL, SQLite, PostgreSQL, Oracle,

SQL Server are supported by

GoFrame ORM

GoFrame

ORM

Adapter

ORM @kotlin2018 ✅

MySQL, SQLite, PostgreSQL, Oracle,

SQL Server are supported by

GoFrame ORM

gf-adapter ORM @zcyc ✅

MySQL, SQLite, PostgreSQL, Oracle,

SQL Server are supported by

GoFrame ORM

Gdb

Adapter
ORM @jxo-me ✅

MySQL, SQLite, PostgreSQL, Oracle,

SQL Server are supported by

GoFrame ORM

https://github.com/casbin/gorm-adapter-ex
https://github.com/casbin/gorm-adapter-ex
https://github.com/go-gorm/gorm
https://github.com/casbin/ent-adapter
https://entgo.io/
https://entgo.io/
https://github.com/casbin/beego-orm-adapter
https://github.com/casbin/beego-orm-adapter
https://beego.wiki/docs/mvc/model/overview/
https://github.com/memwey/casbin-sqlx-adapter
https://github.com/memwey/casbin-sqlx-adapter
https://github.com/memwey
https://github.com/jmoiron/sqlx
https://github.com/Blank-Xu/sqlx-adapter
https://github.com/Blank-Xu/sqlx-adapter
https://github.com/Blank-Xu
https://github.com/jmoiron/sqlx
https://github.com/vance-liu/gdb-adapter
https://github.com/vance-liu/gdb-adapter
https://github.com/vance-liu
https://github.com/gogf/gf/tree/master/contrib/drivers
https://github.com/kotlin2018/adapter
https://github.com/kotlin2018/adapter
https://github.com/kotlin2018/adapter
https://github.com/kotlin2018
https://github.com/gogf/gf/tree/master/contrib/drivers
https://github.com/zcyc/gf-adapter
https://github.com/zcyc
https://github.com/gogf/gf/tree/master/contrib/drivers
https://github.com/jxo-me/gdb-adapter
https://github.com/jxo-me/gdb-adapter
https://github.com/jxo-me
https://github.com/gogf/gf/tree/master/contrib/drivers

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

GoFrame

V2 Adapter
ORM @hailaz ✅

MySQL, SQLite, PostgreSQL, Oracle,

SQL Server are supported by

GoFrame ORM

Bun

Adapter
ORM @JunNishimura ✅

MySQL, SQLite, PostgreSQL, SQL

Server are supported by Bun ORM

Filtered

PostgreSQL

Adapter

SQL Casbin ✅ For PostgreSQL

Filtered pgx

Adapter
SQL @pckhoi ✅ PostgreSQL is supported by pgx

Pgx

Adapter
SQL @gtoxlili ✅

PostgreSQL is supported by pgx,

supports customizable column count

PostgreSQL

Adapter
SQL @cychiuae ✅ For PostgreSQL

RQLite

Adapter
SQL EDOMO Systems ✅ For RQLite

MongoDB

Adapter
NoSQL Casbin ✅

For MongoDB based on MongoDB Go

Driver

RethinkDB

Adapter
NoSQL @adityapandey9 ✅ For RethinkDB

Cassandra

Adapter
NoSQL Casbin ❌ For Apache Cassandra DB

DynamoDB

Adapter
NoSQL HOOQ ❌ For Amazon DynamoDB

Dynacasbin NoSQL NewbMiao ✅ For Amazon DynamoDB

https://github.com/hailaz/gf-casbin-adapter
https://github.com/hailaz/gf-casbin-adapter
https://github.com/hailaz
https://goframe.org/pages/viewpage.action?pageId=1114686
https://github.com/JunNishimura/casbin-bun-adapter
https://github.com/JunNishimura/casbin-bun-adapter
https://github.com/JunNishimura
https://bun.uptrace.dev/guide/drivers.html
https://github.com/casbin/casbin-pg-adapter
https://github.com/casbin/casbin-pg-adapter
https://github.com/casbin/casbin-pg-adapter
https://www.postgresql.org/
https://github.com/pckhoi/casbin-pgx-adapter
https://github.com/pckhoi/casbin-pgx-adapter
https://github.com/pckhoi
https://github.com/jackc/pgx
https://github.com/gtoxlili/pgx-adapter
https://github.com/gtoxlili/pgx-adapter
https://github.com/gtoxlili
https://github.com/jackc/pgx
https://github.com/cychiuae/casbin-pg-adapter
https://github.com/cychiuae/casbin-pg-adapter
https://github.com/cychiuae
https://www.postgresql.org/
https://github.com/edomosystems/rqlite-adapter
https://github.com/edomosystems/rqlite-adapter
https://github.com/edomosystems
https://github.com/rqlite/rqlite/
https://github.com/casbin/mongodb-adapter
https://github.com/casbin/mongodb-adapter
https://www.mongodb.com/
https://github.com/mongodb/mongo-go-driver
https://github.com/mongodb/mongo-go-driver
https://github.com/adityapandey9/rethinkdb-adapter
https://github.com/adityapandey9/rethinkdb-adapter
https://github.com/adityapandey9
https://rethinkdb.com/
https://github.com/casbin/cassandra-adapter
https://github.com/casbin/cassandra-adapter
http://cassandra.apache.org/
https://github.com/HOOQTV/dynacasbin
https://github.com/HOOQTV/dynacasbin
https://github.com/HOOQTV
https://aws.amazon.com/dynamodb/
https://github.com/NewbMiao/dynacasbin
https://github.com/NewbMiao
https://aws.amazon.com/dynamodb/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

ArangoDB

Adapter
NoSQL @adamwasila ✅ For ArangoDB

Amazon S3

Adapter
Cloud Soluto ❌ For Minio and Amazon S3

Go CDK

Adapter
Cloud @bartventer ✅

Adapter based on Go Cloud Dev Kit

that supports: Amazon DynamoDB,

Azure CosmosDB, GCP Firestore,

MongoDB, In-Memory

Azure

Cosmos DB

Adapter

Cloud @spacycoder ✅ For Microsoft Azure Cosmos DB

GCP

Firestore

Adapter

Cloud @reedom ❌ For Google Cloud Platform Firestore

GCP Cloud

Storage

Adapter

Cloud qurami ❌
For Google Cloud Platform Cloud

Storage

GCP Cloud

Spanner

Adapter

Cloud @flowerinthenight ✅
For Google Cloud Platform Cloud

Spanner

Consul

Adapter

KV

store
@ankitm123 ❌ For HashiCorp Consul

Redis

Adapter

(Redigo)

KV

store
Casbin ✅ For Redis

Redis

Adapter

KV

store
@mlsen ✅ For Redis

https://github.com/adamwasila/arangodb-adapter
https://github.com/adamwasila/arangodb-adapter
https://github.com/adamwasila
https://www.arangodb.com/
https://github.com/Soluto/casbin-minio-adapter
https://github.com/Soluto/casbin-minio-adapter
https://github.com/Soluto
https://github.com/minio/minio
https://aws.amazon.com/s3/
https://github.com/bartventer/casbin-go-cloud-adapter
https://github.com/bartventer/casbin-go-cloud-adapter
https://github.com/bartventer
https://gocloud.dev/
https://github.com/spacycoder/cosmos-casbin-adapter
https://github.com/spacycoder/cosmos-casbin-adapter
https://github.com/spacycoder/cosmos-casbin-adapter
https://github.com/spacycoder
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://github.com/reedom/casbin-firestore-adapter
https://github.com/reedom/casbin-firestore-adapter
https://github.com/reedom/casbin-firestore-adapter
https://github.com/reedom
https://cloud.google.com/firestore/
https://github.com/qurami/casbin-cloud-storage-adapter
https://github.com/qurami/casbin-cloud-storage-adapter
https://github.com/qurami/casbin-cloud-storage-adapter
https://github.com/qurami
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://github.com/flowerinthenight/casbin-spanner-adapter
https://github.com/flowerinthenight/casbin-spanner-adapter
https://github.com/flowerinthenight/casbin-spanner-adapter
https://github.com/flowerinthenight
https://cloud.google.com/spanner/
https://cloud.google.com/spanner/
https://github.com/ankitm123/consul-adapter
https://github.com/ankitm123/consul-adapter
https://github.com/ankitm123
https://www.consul.io/
https://github.com/casbin/redis-adapter
https://github.com/casbin/redis-adapter
https://github.com/casbin/redis-adapter
https://redis.io/
https://github.com/mlsen/casbin-redis-adapter
https://github.com/mlsen/casbin-redis-adapter
https://github.com/mlsen
https://redis.io/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

(go-redis)

Etcd

Adapter

KV

store
@sebastianliu ❌ For etcd

BoltDB

Adapter

KV

store
@speza ✅ For Bolt

Bolt

Adapter

KV

store
@wirepair ❌ For Bolt

BadgerDB

Adapter

KV

store
@inits ✅ For BadgerDB

Protobuf

Adapter
Stream Casbin ❌ For Google Protocol Buffers

JSON

Adapter
String Casbin ❌ For JSON

String

Adapter
String @qiangmzsx ❌ For String

HTTP File

Adapter
HTTP @h4ckedneko ❌ For http.FileSystem

FileSystem

Adapter
File @naucon ❌ For fs.FS and embed.FS

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File

Adapter

(built-in)

File Casbin ❌ For .CSV (Comma-Separated Values) files

JDBC JDBC Casbin ✅ MySQL, Oracle, PostgreSQL, DB2, Sybase,

https://github.com/mlsen/casbin-redis-adapter
https://github.com/sebastianliu/etcd-adapter
https://github.com/sebastianliu/etcd-adapter
https://github.com/sebastianliu
https://github.com/coreos/etcd
https://github.com/speza/casbin-bolt-adapter
https://github.com/speza/casbin-bolt-adapter
https://github.com/speza
https://github.com/boltdb/bolt
https://github.com/wirepair/bolt-adapter
https://github.com/wirepair/bolt-adapter
https://github.com/wirepair
https://github.com/boltdb/bolt
https://github.com/inits/casbin-badgerdb-adapter
https://github.com/inits/casbin-badgerdb-adapter
https://github.com/inits
https://github.com/dgraph-io/badger
https://github.com/casbin/protobuf-adapter
https://github.com/casbin/protobuf-adapter
https://developers.google.com/protocol-buffers/
https://github.com/casbin/json-adapter
https://github.com/casbin/json-adapter
https://www.json.org/
https://github.com/qiangmzsx/string-adapter
https://github.com/qiangmzsx/string-adapter
https://github.com/qiangmzsx
https://github.com/h4ckedneko/casbin-httpfs
https://github.com/h4ckedneko/casbin-httpfs
https://github.com/h4ckedneko
https://golang.org/src/net/http/fs.go
https://github.com/naucon/casbin-fs-adapter
https://github.com/naucon/casbin-fs-adapter
https://github.com/naucon
https://pkg.go.dev/io/fs
https://pkg.go.dev/embed
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/jcasbin/jdbc-adapter

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

Adapter SQL Server are supported by JDBC

Hibernate

Adapter
ORM Casbin ✅

Oracle, DB2, SQL Server, Sybase, MySQL,

PostgreSQL are supported by Hibernate

MyBatis

Adapter
ORM Casbin ✅

MySQL, Oracle, PostgreSQL, DB2, Sybase,

SQL Server (the same as JDBC) are

supported by MyBatis 3

Hutool

Adapter
ORM @mapleafgo ✅

MySQL, Oracle, PostgreSQL, SQLite are

supported by Hutool

MongoDB

Adapter
NoSQL Casbin ✅

MongoDB is supported by mongodb-driver-

sync

DynamoDB

Adapter
NoSQL Casbin ❌ For Amazon DynamoDB

Redis

Adapter

KV

store
Casbin ✅ For Redis

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File Adapter

(built-in)
File Casbin ❌

For .CSV (Comma-Separated

Values) files

Filtered File

Adapter

(built-in)

File Casbin ❌

For .CSV (Comma-Separated

Values) files with policy

subset loading support

String

Adapter

(built-in)

String @calebfaruki ❌ For String

Basic

Adapter

Native

ORM
Casbin ✅

pg, mysql, mysql2, sqlite3,

oracledb, mssql are

https://github.com/jcasbin/jdbc-adapter
https://docs.oracle.com/cd/E19226-01/820-7688/gawms/index.html
https://github.com/jcasbin/hibernate-adapter
https://github.com/jcasbin/hibernate-adapter
http://www.hibernate.org/
https://github.com/jcasbin/mybatis-adapter
https://github.com/jcasbin/mybatis-adapter
https://mybatis.org/mybatis-3/
https://github.com/mapleafgo/jcasbin-extra
https://github.com/mapleafgo/jcasbin-extra
https://github.com/mapleafgo
https://github.com/looly/hutool
https://github.com/jcasbin/jcasbin-mongo-adapter
https://github.com/jcasbin/jcasbin-mongo-adapter
https://mongodb.github.io/mongo-java-driver/
https://mongodb.github.io/mongo-java-driver/
https://github.com/jcasbin/dynamodb-adapter
https://github.com/jcasbin/dynamodb-adapter
https://aws.amazon.com/dynamodb/
https://github.com/jcasbin/redis-adapter
https://github.com/jcasbin/redis-adapter
https://redis.io/
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/casbin/node-casbin/blob/master/src/persist/stringAdapter.ts
https://github.com/casbin/node-casbin/blob/master/src/persist/stringAdapter.ts
https://github.com/casbin/node-casbin/blob/master/src/persist/stringAdapter.ts
https://github.com/calebfaruki
https://github.com/node-casbin/basic-adapter
https://github.com/node-casbin/basic-adapter

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

supported by the adapter

itself

Sequelize

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, SQLite,

Microsoft SQL Server are

supported by Sequelize

TypeORM

Adapter
ORM Casbin ✅

MySQL, PostgreSQL,

MariaDB, SQLite, MS SQL

Server, Oracle, WebSQL,

MongoDB are supported by

TypeORM

Prisma

Adapter
ORM Casbin ✅

MySQL, PostgreSQL,

MariaDB, SQLite, MS SQL

Server, AWS Aurora, Azure

SQL are supported by

Prisma

Knex

Adapter
ORM knex ✅

MSSQL, MySQL,

PostgreSQL, SQLite3, Oracle

are supported by Knex.js

Objection.js

Adapter
ORM @willsoto ✅

MSSQL, MySQL,

PostgreSQL, SQLite3, Oracle

are supported by

Objection.js

MikroORM

Adapter
ORM @baisheng ✅

MongoDB, MySQL, MariaDB,

PostgreSQL, SQLite are

supported by MikroORM

Node

PostgreSQL

Native

SQL @touchifyapp ✅

PostgreSQL adapter with

advanced policy subset

loading support and

https://github.com/node-casbin/sequelize-adapter
https://github.com/node-casbin/sequelize-adapter
https://github.com/sequelize/sequelize
https://github.com/node-casbin/typeorm-adapter
https://github.com/node-casbin/typeorm-adapter
https://github.com/typeorm/typeorm
https://github.com/node-casbin/prisma-adapter
https://github.com/node-casbin/prisma-adapter
https://www.prisma.io/
https://github.com/knex/casbin-knex-adapter
https://github.com/knex/casbin-knex-adapter
https://github.com/knex
https://knexjs.org/
https://github.com/willsoto/casbin-objection-adapter
https://github.com/willsoto/casbin-objection-adapter
https://github.com/willsoto
https://vincit.github.io/objection.js/
https://github.com/baisheng/casbin-mikroorm-adapter
https://github.com/baisheng/casbin-mikroorm-adapter
https://github.com/baisheng
https://mikro-orm.io/
https://github.com/touchifyapp/casbin-pg-adapter
https://github.com/touchifyapp/casbin-pg-adapter
https://github.com/touchifyapp/casbin-pg-adapter
https://github.com/touchifyapp

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

Adapter
improved performances built

with node-postgres.

Mongoose

Adapter
NoSQL elastic.io and Casbin ✅

MongoDB is supported by

Mongoose

Mongoose

Adapter

(No-

Transaction)

NoSQL minhducck ✅
MongoDB is supported by

Mongoose

Node

MongoDB

Native

Adapter

NoSQL NathanBhanji ✅ For Node MongoDB Native

Node

MongoDB

Native

Adapter

NoSQL @juicycleff ✅ For Node MongoDB Native

DynamoDB

Adapter
NoSQL @fospitia ✅ For Amazon DynamoDB

Couchbase

Adapter
NoSQL @MarkMYoung ✅ For Couchbase

Redis

Adapter

KV

store
Casbin ❌ For Redis

Redis

Adapter

KV

store
@NandaKishorJeripothula ❌ For Redis

https://github.com/touchifyapp/casbin-pg-adapter
https://node-postgres.com/
https://github.com/node-casbin/mongoose-adapter
https://github.com/node-casbin/mongoose-adapter
https://github.com/elasticio
https://mongoosejs.com/
https://github.com/minhducck/casbin-mongoose-adapter
https://github.com/minhducck/casbin-mongoose-adapter
https://github.com/minhducck/casbin-mongoose-adapter
https://github.com/minhducck/casbin-mongoose-adapter
https://github.com/minhducck
https://mongoosejs.com/
https://github.com/NathanBhanji/mongodb-casbin-adapter
https://github.com/NathanBhanji/mongodb-casbin-adapter
https://github.com/NathanBhanji/mongodb-casbin-adapter
https://github.com/NathanBhanji/mongodb-casbin-adapter
https://github.com/NathanBhanji
https://mongodb.github.io/node-mongodb-native/
https://github.com/juicycleff/casbin-mongodb-adapter
https://github.com/juicycleff/casbin-mongodb-adapter
https://github.com/juicycleff/casbin-mongodb-adapter
https://github.com/juicycleff/casbin-mongodb-adapter
https://github.com/juicycleff
https://mongodb.github.io/node-mongodb-native/
https://github.com/fospitia/casbin-dynamodb-adapter
https://github.com/fospitia/casbin-dynamodb-adapter
https://github.com/fospitia
https://aws.amazon.com/dynamodb/
https://github.com/MarkMYoung/casbin-couchbase-adapter
https://github.com/MarkMYoung/casbin-couchbase-adapter
https://github.com/MarkMYoung
https://www.couchbase.com/
https://github.com/node-casbin/redis-adapter
https://github.com/node-casbin/redis-adapter
https://redis.io/
https://github.com/NandaKishorJeripothula/node-casbin-redis-adapter
https://github.com/NandaKishorJeripothula/node-casbin-redis-adapter
https://github.com/NandaKishorJeripothula
https://redis.io/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File Adapter

(built-in)
File Casbin ❌ For .CSV (Comma-Separated Values) files

Database

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, SQLite, Microsoft SQL

Server are supported by techone/database

Zend Db

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, SQLite, Oracle, IBM DB2,

Microsoft SQL Server, Other PDO Driver are

supported by zend-db

Doctrine

DBAL

Adapter

(Recommend)

ORM Casbin ✅

Powerful PHP database abstraction layer

(DBAL) with many features for database

schema introspection and management.

Medoo

Adapter
ORM Casbin ✅

Medoo is a lightweight PHP Database

Framework to Accelerate Development,

supports all SQL databases, including MySQL ,

MSSQL , SQLite , MariaDB , PostgreSQL ,

Sybase , Oracle and more.

Laminas-db

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, Oracle, IBM DB2,

Microsoft SQL Server, PDO, etc. are

supported by laminas-db

Zend-db

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, Oracle, IBM DB2,

Microsoft SQL Server, PDO, etc. are

supported by zend-db

ThinkORM

Adapter

(ThinkPHP)

ORM Casbin ✅

MySQL, PostgreSQL, SQLite, Oracle,

Microsoft SQL Server, MongoDB are

supported by ThinkORM

Redis

Adapter

KV

store
@nsnake ❌ For Redis

https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/php-casbin/database-adapter
https://github.com/php-casbin/database-adapter
https://github.com/techoner/database
https://github.com/php-casbin/zend-db-adapter
https://github.com/php-casbin/zend-db-adapter
https://docs.zendframework.com/zend-db/
https://github.com/php-casbin/dbal-adapter
https://github.com/php-casbin/dbal-adapter
https://github.com/php-casbin/dbal-adapter
https://github.com/php-casbin/dbal-adapter
https://github.com/doctrine/dbal
https://github.com/php-casbin/medoo-adapter
https://github.com/php-casbin/medoo-adapter
https://github.com/catfan/Medoo
https://github.com/php-casbin/laminas-db-adapter
https://github.com/php-casbin/laminas-db-adapter
https://github.com/laminas/laminas-db
https://github.com/php-casbin/zend-db-adapter
https://github.com/php-casbin/zend-db-adapter
https://github.com/zendframework/zend-db
https://github.com/getandpost/tp3-adapter
https://github.com/getandpost/tp3-adapter
https://github.com/getandpost/tp3-adapter
https://github.com/top-think/think-orm
https://github.com/nsnake/CasbinAdapter-Redis-Adapter
https://github.com/nsnake/CasbinAdapter-Redis-Adapter
https://github.com/nsnake
https://redis.io/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File Adapter

(built-in)
File Casbin ❌

For .CSV

(Comma-

Separated

Values) files

Django ORM

Adapter
ORM Casbin ✅

PostgreSQL,

MariaDB,

MySQL,

Oracle,

SQLite, IBM

DB2,

Microsoft

SQL Server,

Firebird,

ODBC are

supported by

Django ORM

SQLObject

Adapter
ORM Casbin ✅

PostgreSQL,

MySQL,

SQLite,

Microsoft

SQL Server,

Firebird,

Sybase, MAX

DB,

pyfirebirdsql

are

supported by

SQLObject

SQLAlchemy

Adapter
ORM Casbin ✅

PostgreSQL,

MySQL,

SQLite,

Oracle,

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/officialpycasbin/django-orm-adapter
https://github.com/officialpycasbin/django-orm-adapter
https://docs.djangoproject.com/en/3.0/ref/databases/
https://github.com/officialpycasbin/sqlobject-adapter
https://github.com/officialpycasbin/sqlobject-adapter
http://www.sqlobject.org/index.html
https://github.com/officialpycasbin/sqlalchemy-adapter
https://github.com/officialpycasbin/sqlalchemy-adapter

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

Microsoft

SQL Server,

Firebird,

Sybase are

supported by

SQLAlchemy

Async

SQLAlchemy

Adapter

ORM Casbin ✅

PostgreSQL,

MySQL,

SQLite,

Oracle,

Microsoft

SQL Server,

Firebird,

Sybase are

supported by

SQLAlchemy

Async

Databases

Adapter

ORM Casbin ✅

PostgreSQL,

MySQL,

SQLite,

Oracle,

Microsoft

SQL Server,

Firebird,

Sybase are

supported by

Databases

Peewee

Adapter
ORM @shblhy ✅

PostgreSQL,

MySQL,

SQLite are

supported by

Peewee

https://www.sqlalchemy.org/
https://github.com/officialpycasbin/async-sqlalchemy-adapter
https://github.com/officialpycasbin/async-sqlalchemy-adapter
https://github.com/officialpycasbin/async-sqlalchemy-adapter
https://www.sqlalchemy.org/
https://github.com/officialpycasbin/casbin-databases-adapter
https://github.com/officialpycasbin/casbin-databases-adapter
https://github.com/officialpycasbin/casbin-databases-adapter
https://www.encode.io/databases/
https://github.com/shblhy/peewee-adapter
https://github.com/shblhy/peewee-adapter
https://github.com/shblhy
http://docs.peewee-orm.com/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

MongoEngine

Adapter
ORM @zhangbailong945 ❌

MongoDB is

supported by

MongoEngine

Pony ORM

Adapter
ORM @drorvinkler ✅

MySQL,

PostgreSQL,

SQLite,

Oracle,

CockroachDB

are

supported by

Pony ORM

Tortoise ORM

Adapter
ORM @thearchitector ✅

PostgreSQL

(>=9.4),

MySQL,

MariaDB, and

SQLite are

supported by

Tortoise ORM

Async Ormar

Adapter
ORM

@shepilov-

vladislav
✅

PostgreSQL,

MySQL,

SQLite are

supported by

Ormar

SQLModel

Adapter
ORM

@shepilov-

vladislav
✅

PostgreSQL,

MySQL,

SQLite are

supported by

SQLModel

Couchbase

Adapter
NoSQL ScienceLogic

✅ (without

remove_filtered_policy())

For

Couchbase

https://github.com/zhangbailong945/mongoengine_adapter
https://github.com/zhangbailong945/mongoengine_adapter
https://github.com/zhangbailong945
http://mongoengine.org/
https://github.com/drorvinkler/pycasbin-pony-adapter
https://github.com/drorvinkler/pycasbin-pony-adapter
https://github.com/drorvinkler
https://ponyorm.org/
https://github.com/thearchitector/casbin-tortoise-adapter
https://github.com/thearchitector/casbin-tortoise-adapter
https://github.com/thearchitector
https://tortoise.github.io/databases.html
https://github.com/shepilov-vladislav/ormar-casbin-adapter
https://github.com/shepilov-vladislav/ormar-casbin-adapter
https://github.com/shepilov-vladislav
https://github.com/shepilov-vladislav
https://github.com/collerek/ormar/
https://github.com/shepilov-vladislav/async-casbin-sqlmodel-adapter
https://github.com/shepilov-vladislav/async-casbin-sqlmodel-adapter
https://github.com/shepilov-vladislav
https://github.com/shepilov-vladislav
https://github.com/tiangolo/sqlmodel
https://github.com/ScienceLogic/casbin-couchbase-adapter
https://github.com/ScienceLogic/casbin-couchbase-adapter
https://github.com/ScienceLogic
https://www.couchbase.com/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

DynamoDB

Adapter
NoSQL @abqadeer ✅

For

DynamoDB

Pymongo

Adapter
NoSQL Casbin ❌

MongoDB is

supported by

Pymongo

Redis

Adapter

KV

store
Casbin ✅ For Redis

GCP Firebase

Adapter
Cloud @devrushi41 ✅

For Google

Cloud

Platform

Firebase

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File

Adapter

(built-

in)

File Casbin ❌
For .CSV (Comma-Separated Values)

files

EF

Adapter
ORM Casbin ❌

MySQL, PostgreSQL, SQLite, Microsoft

SQL Server, Oracle, DB2, etc. are

supported by Entity Framework 6

EFCore

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, SQLite, Microsoft

SQL Server, Oracle, DB2, etc. are

supported by Entity Framework Core

Linq2DB

Adapter
ORM @Tirael ✅

MySQL, PostgreSQL, SQLite, Microsoft

SQL Server, Oracle, Access, Firebird,

Sybase, etc. are supported by linq2db

Azure Cloud @sagarkhandelwal ✅ For Microsoft Azure Cosmos DB

https://github.com/abqadeer/python-dycasbin
https://github.com/abqadeer/python-dycasbin
https://github.com/abqadeer/
https://aws.amazon.com/dynamodb/
https://github.com/officialpycasbin/pymongo-adapter
https://github.com/officialpycasbin/pymongo-adapter
https://pypi.org/project/pymongo/
https://github.com/officialpycasbin/redis-adapter
https://github.com/officialpycasbin/redis-adapter
https://redis.io/
https://github.com/devrushi41/pycasbin-firebase-adapter
https://github.com/devrushi41/pycasbin-firebase-adapter
https://github.com/devrushi41
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/casbin-net/EF-Adapter
https://github.com/casbin-net/EF-Adapter
https://docs.microsoft.com/en-us/ef/ef6/
https://github.com/casbin-net/EFCore-Adapter
https://github.com/casbin-net/EFCore-Adapter
https://docs.microsoft.com/en-us/ef/core/
https://github.com/Tirael/Linq2DB-Adapter
https://github.com/Tirael/Linq2DB-Adapter
https://github.com/Tirael
https://github.com/linq2db/linq2db/blob/master/Tests/Base/TestProvName.cs
https://github.com/linq2db/linq2db/blob/master/Tests/Base/TestProvName.cs
https://github.com/linq2db/linq2db/blob/master/Tests/Base/TestProvName.cs
https://github.com/linq2db/linq2db
https://github.com/sagarkhandelwal/Casbin-Using-Cosmos
https://github.com/sagarkhandelwal
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

Cosmos

DB

Adapter

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File Adapter

(built-in)
File Casbin ❌

For .CSV (Comma-Separated

Values) files

Diesel

Adapter
ORM Casbin ✅

SQLite, PostgreSQL, MySQL are

supported by Diesel

Sqlx

Adapter
ORM Casbin ✅

PostgreSQL, MySQL are

supported by Sqlx with fully

asynchronous operation

SeaORM

Adapter
ORM @lingdu1234 ✅

PostgreSQL, MySQL, SQLite are

supported by SeaORM with fully

asynchronous operation

SeaORM

Adapter
ORM @ZihanType ✅

PostgreSQL, MySQL, SQLite are

supported by SeaORM with fully

asynchronous operation

Rbatis

Adapter
ORM rbatis ✅

MySQL, PostgreSQL, SQLite, SQL

Server, MariaDB, TiDB,

CockroachDB, Oracle are

supported by Rbatis

DynamodDB

Adapter
NoSQL @fospitia ✅ For Amazon DynamoDB

MongoDB

Adapter
MongoDB @wangjun861205 ✅ For MongoDB

https://github.com/sagarkhandelwal/Casbin-Using-Cosmos
https://github.com/sagarkhandelwal/Casbin-Using-Cosmos
https://github.com/sagarkhandelwal/Casbin-Using-Cosmos
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/casbin-rs/diesel-adapter
https://github.com/casbin-rs/diesel-adapter
https://github.com/diesel-rs/diesel/blob/master/guide_drafts/backend_installation.md
http://diesel.rs/
https://github.com/casbin-rs/sqlx-adapter
https://github.com/casbin-rs/sqlx-adapter
https://github.com/launchbadge/sqlx
https://github.com/lingdu1234/sea_orm_casbin_adapter
https://github.com/lingdu1234/sea_orm_casbin_adapter
https://github.com/lingdu1234
https://github.com/SeaQL/sea-orm
https://github.com/ZihanType/sea-orm-adapter
https://github.com/ZihanType/sea-orm-adapter
https://github.com/ZihanType
https://github.com/SeaQL/sea-orm
https://github.com/jiashiwen/casbin-rbatis-adapter
https://github.com/jiashiwen/casbin-rbatis-adapter
https://github.com/rbatis
https://github.com/rbatis/rbatis
https://github.com/fospitia/dynamodb-adapter
https://github.com/fospitia/dynamodb-adapter
https://github.com/fospitia
https://aws.amazon.com/dynamodb/
https://github.com/wangjun861205/nb-mongo-adapter
https://github.com/wangjun861205/nb-mongo-adapter
https://github.com/wangjun861205
https://www.mongodb.com/

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

JSON

Adapter
String Casbin ✅ For JSON

YAML

Adapter
String Casbin ✅ For YAML

String

Adapter
String Casbin ❌ For String

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File

Adapter

(built-

in)

File Casbin ❌ For .CSV (Comma-Separated Values) files

Sequel

Adapter
ORM CasbinRuby ✅

ADO, Amalgalite, IBM_DB, JDBC, MySQL, Mysql2,

ODBC, Oracle, PostgreSQL, SQLAnywhere,

SQLite3, and TinyTDS are supported by Sequel

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File Adapter

(built-in)
File Casbin ❌ For .CSV (Comma-Separated Values) files

Memory

Adapter (built-

in)

Memory Casbin ❌ For memory

Fluent Adapter ORM Casbin ✅
PostgreSQL, SQLite, MySQL, MongoDB

are supported by Fluent

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

File Adapter File Casbin ❌ For .CSV (Comma-Separated Values)

http://github.com/casbin-rs/json-adapter
http://github.com/casbin-rs/json-adapter
https://json.org/
https://github.com/casbin-rs/yaml-adapter
https://github.com/casbin-rs/yaml-adapter
https://yaml.org/
https://github.com/casbin-rs/string-adapter
https://github.com/casbin-rs/string-adapter
https://doc.rust-lang.org/std/string/struct.String.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/CasbinRuby/casbin-ruby-sql-adapter
https://github.com/CasbinRuby/casbin-ruby-sql-adapter
https://github.com/CasbinRuby
http://sequel.jeremyevans.net/
http://sequel.jeremyevans.net/
http://sequel.jeremyevans.net/
http://sequel.jeremyevans.net/
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/casbin/SwiftCasbin/blob/master/Sources/Casbin/Adapter/MemoryAdapter.swift
https://github.com/casbin/SwiftCasbin/blob/master/Sources/Casbin/Adapter/MemoryAdapter.swift
https://github.com/casbin/SwiftCasbin/blob/master/Sources/Casbin/Adapter/MemoryAdapter.swift
https://github.com/SwiftCasbin/fluent-adapter
https://docs.vapor.codes/4.0/fluent/overview/#drivers
https://github.com/vapor/fluent
https://en.wikipedia.org/wiki/Comma-separated_values

AdaptAdapterer TTypeype AutAuthorhor AutAutoSaoSavvee DescriptionDescription

(built-in) files

Filtered File

Adapter

(built-in)

File Casbin ❌
For .CSV (Comma-Separated Values)

files with policy subset loading support

LuaSQL

Adapter
ORM Casbin ✅

MySQL, PostgreSQL, SQLite3 are

supported by LuaSQL

4DaysORM

Adapter
ORM Casbin ✅

MySQL, SQLite3 are supported by

4DaysORM

OpenResty

Adapter
ORM @tom2nonames ✅

MySQL, PostgreSQL are supported by

it

NONOTETE

1. If casbin.NewEnforcer() is called with an explicit or implicit adapter, the policy will be

loaded automatically.

2. You can call e.LoadPolicy() to reload the policy rules from the storage.

3. If the adapter does not support the Auto-Save feature, The policy rules cannot be

automatically saved back to the storage when you add or remove policies. You have to

call SavePolicy() manually to save all policy rules.

ExamplesExamples
Here we provide several examples:

File adaptFile adapter (builter (built-in)-in)

Below shows how to initialize an enforcer from the built-in file adapter:

GoGo PHPPHP RustRust

https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/casbin-lua/luasql-adapter
https://github.com/casbin-lua/luasql-adapter
http://lunarmodules.github.io/luasql/
https://github.com/casbin-lua/4daysorm-adapter
https://github.com/casbin-lua/4daysorm-adapter
https://github.com/itdxer/4DaysORM
https://github.com/tom2nonames/lua-resty-casbin-adapter
https://github.com/tom2nonames/lua-resty-casbin-adapter
https://github.com/tom2nonames

This is the same with:

GoGo PHPPHP RustRust

import "github.com/casbin/casbin"

e := casbin.NewEnforcer("examples/basic_model.conf", "examples/

basic_policy.csv")

use Casbin\Enforcer;

$e = new Enforcer('examples/basic_model.conf', 'examples/basic_policy.csv');

use casbin::prelude::*;

let mut e = Enforcer::new("examples/basic_model.conf", "examples/

basic_policy.csv").await?;

import (

"github.com/casbin/casbin"

"github.com/casbin/casbin/file-adapter"

)

a := fileadapter.NewAdapter("examples/basic_policy.csv")

e := casbin.NewEnforcer("examples/basic_model.conf", a)

use Casbin\Enforcer;

use Casbin\Persist\Adapters\FileAdapter;

$a = new FileAdapter('examples/basic_policy.csv');

$e = new Enforcer('examples/basic_model.conf', $a);

use casbin::prelude::*;

let a = FileAdapter::new("examples/basic_policy.csv");

let e = Enforcer::new("examples/basic_model.conf", a).await?;

MySQL adaptMySQL adapterer

Below shows how to initialize an enforcer from MySQL database. it connects to a MySQL DB on

127.0.0.1:3306 with root and blank password.

GoGo RustRust PHPPHP

import (

"github.com/casbin/casbin"

"github.com/casbin/mysql-adapter"

)

a := mysqladapter.NewAdapter("mysql", "root:@tcp(127.0.0.1:3306)/")

e := casbin.NewEnforcer("examples/basic_model.conf", a)

// https://github.com/casbin-rs/diesel-adapter

// make sure you activate feature `mysql`

use casbin::prelude::*;

use diesel_adapter::{ConnOptions, DieselAdapter};

let mut conn_opts = ConnOptions::default();

conn_opts

.set_hostname("127.0.0.1")

.set_port(3306)

.set_host("127.0.0.1:3306") // overwrite hostname, port config

.set_database("casbin")

.set_auth("casbin_rs", "casbin_rs");

let a = DieselAdapter::new(conn_opts)?;

let mut e = Enforcer::new("examples/basic_model.conf", a).await?;

// https://github.com/php-casbin/dbal-adapter

use Casbin\Enforcer;

use CasbinAdapter\DBAL\Adapter as DatabaseAdapter;

$config = [

// Either 'driver' with one of the following values:

// pdo_mysql,pdo_sqlite,pdo_pgsql,pdo_oci (unstable),pdo_sqlsrv,pdo_sqlsrv,

// mysqli,sqlanywhere,sqlsrv,ibm_db2 (unstable),drizzle_pdo_mysql

https://github.com/casbin/mysql-adapter

Use yUse your oour own stwn storage adaptorage adapterer
You can use your own adapter like below:

MigratMigrate/Cone/Convverert betwt between diffeen differerent adaptent adapterer
If you want to convert adapter from A to B , you can do like this:

1.Load policy from A to memory

or

2.convert your adapter from A to B

3.Save policy from memory to B

import (

"github.com/casbin/casbin"

"github.com/your-username/your-repo"

)

a := yourpackage.NewAdapter(params)

e := casbin.NewEnforcer("examples/basic_model.conf", a)

e, _ := NewEnforcer(m, A)

e.SetAdapter(A)

e.LoadPolicy()

e.SetAdapter(B)

e.SavePolicy()

Load/SaLoad/Savve at run-timee at run-time
You may also want to reload the model, reload the policy or save the policy after initialization:

AutAutoSaoSavvee
There is a feature called Auto-Save for adapters. When an adapter supports Auto-Save , it means it

can support adding a single policy rule to the storage, or removing a single policy rule from the

storage. This is unlike SavePolicy() , because the latter will delete all policy rules in the storage

and save all policy rules from Casbin enforcer to the storage. So it may suffer performance issue

when the number of policy rules is large.

When the adapter supports Auto-Save , you can switch this option via

Enforcer.EnableAutoSave() function. The option is enabled by default (if the adapter supports it).

NONOTETE

1. The Auto-Save feature is optional. An adapter can choose to implement it or not.

2. Auto-Save only works for a Casbin enforcer when the adapter the enforcer uses

supports it.

3. See the AutoSave column in the above adapter list to see if Auto-Save is supported by

an adapter.

Here's an example about how to use Auto-Save :

// Reload the model from the model CONF file.

e.LoadModel()

// Reload the policy from file/database.

e.LoadPolicy()

// Save the current policy (usually after changed with Casbin API) back to file/

database.

e.SavePolicy()

import (

For more examples, please see: https://github.com/casbin/xorm-adapter/blob/master/

adapter_test.go

HoHow tw to writo write an adapte an adapterer

All adapters should implement the Adapter interface by providing at least two mandatory

methods: LoadPolicy(model model.Model) error and SavePolicy(model model.Model)

error .

The other three functions are optional. They should be implemented if the adapter supports the

Auto-Save feature.

MetMethodhod TTypeype DescriptionDescription

LoadPolicy() mandatory Load all policy rules from the storage

SavePolicy() mandatory Save all policy rules to the storage

AddPolicy() optional Add a policy rule to the storage

RemovePolicy() optional Remove a policy rule from the storage

RemoveFilteredPolicy() optional
Remove policy rules that match the filter from the

storage

NONOTETE

If an adapter doesn't support Auto-Save , it should provide an empty implementation for the

three optional functions. Here's an example for Golang:

// AddPolicy adds a policy rule to the storage.

func (a *Adapter) AddPolicy(sec string, ptype string, rule []string) error {

return errors.New("not implemented")

}

// RemovePolicy removes a policy rule from the storage.

func (a *Adapter) RemovePolicy(sec string, ptype string, rule []string) error {

return errors.New("not implemented")

https://github.com/casbin/xorm-adapter/blob/master/adapter_test.go
https://github.com/casbin/xorm-adapter/blob/master/adapter_test.go
https://github.com/casbin/casbin/blob/master/persist/adapter.go

Casbin enforcer will ignore the not implemented error when calling these three optional functions.

There're details about how to write an adapter.

• Data Structure. Adapter should support reading at leastleast six columns.

• Database Name. The default database name should be casbin .

• Table Name. The default table name should be casbin_rule .

• Ptype Column. Name of this column should be ptype instead of p_type or Ptype .

• Table definition should be (id int primary key, ptype varchar, v0 varchar, v1

varchar, v2 varchar, v3 varchar, v4 varchar, v5 varchar) .

• The unique key index should be built on columns ptype,v0,v1,v2,v3,v4,v5 .

• LoadFilteredPolicy requires a filter as parameter. The filter should be something like this.

Who is rWho is responsible tesponsible to cro createate te the DB?he DB?

As a convention, the adapter should be able to automatically create a database named casbin if it

doesn't exist and use it for policy storage. Please use the Xorm adapter as a reference

implementation: https://github.com/casbin/xorm-adapter

ContConteext Adaptxt Adapterer
ContextAdapter provides a context-aware interface for Casbin adapters.

Through context, you can implement features such as timeout control for the Adapter API

ExampleExample

gormadapter supports adapter with context, the following is a timeout control implemented using

context

{

"p":[["alice"], ["bob"]],

"g":[["", "book_group"], ["", "pen_group"]],

"g2":[["alice"]]

}

ca, _ := NewContextAdapter("mysql", "root:@tcp(127.0.0.1:3306)/", "casbin")

// Limited time 300s

https://github.com/casbin/xorm-adapter
https://github.com/casbin/casbin/blob/master/persist/adapter_context.go
https://github.com/casbin/gorm-adapter

HoHow tw to writo write an conte an conteext adaptxt adapterer

ContextAdapter API only has an extra layer of context processing than ordinary Adapter API, and

on the basis of implementing ordinary Adapter API, you can encapsulate your own processing logic

for context

A simple reference to the gormadapter : adapter.go

https://github.com/casbin/gorm-adapter/blob/master/adapter.go

WWatatcherschers
We support the use of distributed messaging systems like etcd to maintain consistency

between multiple Casbin enforcer instances. This allows our users to concurrently use

multiple Casbin enforcers to handle a large number of permission checking requests.

Similar to policy storage adapters, we do not include watcher code in the main library. Any

support for a new messaging system should be implemented as a watcher. A complete list

of Casbin watchers is provided below. We welcome any third-party contributions for a new

watcher, please inform us and we will add it to this list:

GoGo JaJavvaa Node.jsNode.js PytPythonhon .NET.NET RubRubyy PHPPHP

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

PostgreSQL

WatcherEx
Database @IguteChung WatcherEx for PostgreSQL

Redis WatcherEx KV store Casbin WatcherEx for Redis

Redis Watcher KV store @billcobbler Watcher for Redis

Etcd Watcher KV store Casbin Watcher for etcd

TiKV Watcher KV store Casbin Watcher for TiKV

Kafka Watcher
Messaging

system
@wgarunap Watcher for Apache Kafka

NATS Watcher
Messaging

system
Soluto Watcher for NATS

ZooKeeper Watcher Messaging Grepsr Watcher for Apache ZooKeeper

https://github.com/coreos/etcd
https://github.com/IguteChung/casbin-psql-watcher
https://github.com/IguteChung/casbin-psql-watcher
https://github.com/IguteChung
https://www.postgresql.org/
https://github.com/casbin/redis-watcher
http://redis.io/
https://github.com/billcobbler/casbin-redis-watcher
https://github.com/billcobbler
http://redis.io/
https://github.com/casbin/etcd-watcher
https://github.com/coreos/etcd
https://github.com/casbin/tikv-watcher
https://github.com/tikv/tikv
https://github.com/wgarunap/casbin-kafka-watcher
https://github.com/wgarunap
https://kafka.apache.org/
https://github.com/Soluto/casbin-nats-watcher
https://github.com/Soluto
https://nats.io/
https://github.com/grepsr/casbin-zk-watcher
https://github.com/grepsr
https://zookeeper.apache.org/

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

system

NATS, RabbitMQ,

GCP Pub/Sub, AWS

SNS & SQS, Kafka,

InMemory

Messaging

System
@rusenask

Watcher based on Go Cloud Dev

Kit that works with leading cloud

providers and self-hosted

infrastructure

NATS, RabbitMQ,

GCP Pub/Sub, AWS

SNS & SQS, Kafka,

InMemory

Messaging

System
@bartventer

WatcherEx based on Go Cloud

Dev Kit that works with leading

cloud providers and self-hosted

infrastructure

RocketMQ Watcher
Messaging

system
@fmyxyz Watcher for Apache RocketMQ

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

Etcd Adapter KV store @mapleafgo Watcher for etcd

Redis Watcher KV store Casbin Watcher for Redis

Redis WatcherEx KV store Casbin WatcherEx for Redis

Lettuce-Based Redis

Watcher
KV store Casbin

Watcher for Redis based on

Lettuce)

PostgreSQL Watcher Database Casbin Watcher for PostgreSQL

Kafka Watcher
Messaging

system
Casbin Watcher for Apache Kafka

https://github.com/rusenask/casbin-go-cloud-watcher
https://github.com/rusenask/casbin-go-cloud-watcher
https://github.com/rusenask/casbin-go-cloud-watcher
https://github.com/rusenask/casbin-go-cloud-watcher
https://github.com/rusenask/
https://gocloud.dev/
https://gocloud.dev/
https://github.com/bartventer/casbin-go-cloud-watcher
https://github.com/bartventer/casbin-go-cloud-watcher
https://github.com/bartventer/casbin-go-cloud-watcher
https://github.com/bartventer/casbin-go-cloud-watcher
https://github.com/bartventer/
https://gocloud.dev/
https://gocloud.dev/
https://github.com/fmyxyz/casbin-rocketmq-watcher
https://github.com/fmyxyz
https://rocketmq.apache.org/
https://github.com/mapleafgo/jcasbin-extra
https://github.com/mapleafgo
https://github.com/coreos/etcd
https://github.com/jcasbin/redis-watcher
http://redis.io/
https://github.com/jcasbin/redis-watcher-ex
http://redis.io/
https://github.com/jcasbin/lettuce-redis-watcher
https://github.com/jcasbin/lettuce-redis-watcher
http://redis.io/
https://lettuce.io/
https://github.com/jcasbin/jcasbin-postgres-watcher
https://www.postgresql.org/
https://github.com/jcasbin/kafka-watcher
https://kafka.apache.org/

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

Etcd Watcher KV store Casbin Watcher for etcd

Redis Watcher KV store Casbin Watcher for Redis

Pub/Sub Watcher
Messaging

system
Casbin

Watcher for Google Cloud

Pub/Sub

MongoDB Change

Streams Watcher
Database Casbin

Watcher for MongoDB

Change Streams

Postgres Watcher Database @mcollina Watcher for PostgreSQL

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

Etcd Watcher KV store Casbin Watcher for etcd

Redis Watcher KV store Casbin Watcher for Redis

Redis Watcher KV store ScienceLogic Watcher for Redis

Redis Async Watcher KV store @kevinkelin Watcher for Redis

PostgreSQL Watcher Database Casbin Watcher for PostgreSQL

RabbitMQ Watcher Messaging system Casbin Watcher for RabbitMQ

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

Redis Watcher KV store @Sbou Watcher for Redis

https://github.com/node-casbin/etcd-watcher
https://github.com/coreos/etcd
https://github.com/node-casbin/redis-watcher
http://redis.io/
https://github.com/node-casbin/pubsub-watcher
https://cloud.google.com/pubsub/docs
https://cloud.google.com/pubsub/docs
https://github.com/node-casbin/mongo-changestream-watcher
https://github.com/node-casbin/mongo-changestream-watcher
https://www.mongodb.com/docs/manual/changeStreams/
https://www.mongodb.com/docs/manual/changeStreams/
https://github.com/mcollina/casbin-pg-watcher
https://github.com/mcollina
https://www.postgresql.org/
https://github.com/officialpycasbin/etcd-watcher
https://github.com/coreos/etcd
https://github.com/officialpycasbin/redis-watcher
http://redis.io/
https://github.com/ScienceLogic/flask-casbin-redis-watcher
https://github.com/ScienceLogic
http://redis.io/
https://github.com/kevinkelin/casbin_async_redis_watcher
https://github.com/kevinkelin
http://redis.io/
https://github.com/officialpycasbin/postgresql-watcher
https://www.postgresql.org/
https://github.com/officialpycasbin/rabbitmq-watcher
https://www.rabbitmq.com/
https://github.com/Sbou/Casbin.NET-Redis-Watcher
https://github.com/Sbou
http://redis.io/

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

Redis Watcher KV store CasbinRuby Watcher for Redis

RabbitMQ Watcher Messaging system CasbinRuby Watcher for RabbitMQ

WWatatchercher TTypeype AutAuthorhor DescriptionDescription

Redis Watcher KV store @Tinywan Watcher for Redis

WWatatcherExcherEx
In order to support incremental synchronization between multiple instances, we provide the

WatcherEx interface. We hope it can notify other instances when the policy changes, but

there is currently no implementation of WatcherEx . We recommend that you use dispatcher

to achieve this.

Compared with Watcher interface, WatcherEx can distinguish what type of update action

is received, e.g., AddPolicy and RemovePolicy .

WatcherEx Apis:

APIAPI DescriptionDescription

SetUpdateCallback(func(string))

error

SetUpdateCallback sets the callback function

that the watcher will call, when the policy in DB

has been changed by other instances. A classic

callback is Enforcer.LoadPolicy().

Update() error

Update calls the update callback of other

instances to synchronize their policy. It is usually

called after changing the policy in DB, like

Enforcer.SavePolicy(), Enforcer.AddPolicy(),

https://github.com/CasbinRuby/casbin-ruby-redis-watcher
https://github.com/CasbinRuby
http://redis.io/
https://github.com/CasbinRuby/casbin-ruby-rabbitmq-watcher
https://github.com/CasbinRuby
https://www.rabbitmq.com/
https://github.com/php-casbin/webman-permission
https://github.com/Tinywan
http://redis.io/

APIAPI DescriptionDescription

Enforcer.RemovePolicy(), etc.

Close()
Close stops and releases the watcher, the

callback function will not be called any more.

UpdateForAddPolicy(sec, ptype

string, params ...string) error

UpdateForAddPolicy calls the update callback of

other instances to synchronize their policy. It is

called after a policy is added via

Enforcer.AddPolicy(),

Enforcer.AddNamedPolicy(),

Enforcer.AddGroupingPolicy() and

Enforcer.AddNamedGroupingPolicy().

UpdateForRemovePolicy(sec, ptype

string, params ...string) error

UPdateForRemovePolicy calls the update

callback of other instances to synchronize their

policy. It is called after a policy is removed by

Enforcer.RemovePolicy(),

Enforcer.RemoveNamedPolicy(),

Enforcer.RemoveGroupingPolicy() and

Enforcer.RemoveNamedGroupingPolicy().

UpdateForRemoveFilteredPolicy(sec,

ptype string, fieldIndex int,

fieldValues ...string) error

UpdateForRemoveFilteredPolicy calls the update

callback of other instances to synchronize their

policy. It is called after

Enforcer.RemoveFilteredPolicy(),

Enforcer.RemoveFilteredNamedPolicy(),

Enforcer.RemoveFilteredGroupingPolicy() and

Enforcer.RemoveFilteredNamedGroupingPolicy().

UpdateForSavePolicy(model

model.Model) error

UpdateForSavePolicy calls the update callback

of other instances to synchronize their policy. It

is called after Enforcer.SavePolicy()

APIAPI DescriptionDescription

UpdateForAddPolicies(sec string,

ptype string, rules ...[]string) error

UpdateForAddPolicies calls the update callback

of other instances to synchronize their policy. It

is called after Enforcer.AddPolicies(),

Enforcer.AddNamedPolicies(),

Enforcer.AddGroupingPolicies() and

Enforcer.AddNamedGroupingPolicies().

UpdateForRemovePolicies(sec

string, ptype string, rules ...[]string)

error

UpdateForRemovePolicies calls the update

callback of other instances to synchronize their

policy. It is called after

Enforcer.RemovePolicies(),

Enforcer.RemoveNamedPolicies(),

Enforcer.RemoveGroupingPolicies() and

Enforcer.RemoveNamedGroupingPolicies().

DispatDispatcherschers
Dispatchers provide a way to synchronize incremental changes of policy. They

should be based on consistency algorithms such as Raft to ensure the

consistency of all enforcer instances. Through dispatchers, users can easily

establish distributed clusters.

The dispatcher's method is divided into two parts. The first part is the method

combined with Casbin. These methods should be called inside Casbin. Users can

use the more complete API provided by Casbin itself.

The other part is the method defined by the dispatcher itself, including the

dispatcher initialization method, and different functions provided by different

algorithms, such as dynamic membership and config changes.

NONOTETE

We hope dispatchers only ensure the consistency of the Casbin enforcer at

runtime. So if the policy is inconsistent during initialization, the dispatchers

will not work properly. Users need to ensure that the state of all instances

is consistent before using dispatchers.

A complete list of Casbin dispatchers is provided below. Any 3rd-party

contributions on a new dispatcher are welcomed. Please inform us, and we will

add it to this list.

GoGo

AdaptAdapterer TTypeype AutAuthorhor DescriptionDescription

Hashicorp Raft

Dispatcher
Raft Casbin

A dispatcher based on

Hashicorp Raft

KDKYG/casbin-

dispatcher
Raft @KDKYG

A dispatcher based on

Hashicorp Raft

DistributDistributedEnfedEnfororcercer

DistributedEnforcer wraps SyncedEnforcer for the dispatcher.

GoGo

e, _ := casbin.NewDistributedEnforcer("examples/

basic_model.conf", "examples/basic_policy.csv")

https://github.com/casbin/hraft-dispatcher
https://github.com/casbin/hraft-dispatcher
https://github.com/hashicorp/raft
https://github.com/KDKYG/casbin-dispatcher
https://github.com/KDKYG/casbin-dispatcher
https://github.com/KDKYG
https://github.com/hashicorp/raft

RRole Managersole Managers
The role manager is used to manage the RBAC role hierarchy (user-role mapping)

in Casbin. A role manager can retrieve role data from Casbin policy rules or

external sources such as LDAP, Okta, Auth0, Azure AD, etc. We support different

implementations of a role manager. To keep the lightweight, we don't include role

manager code in the main library (except the default role manager). A complete

list of Casbin role managers is provided below. Any third-party contributions for a

new role manager are welcome. Please inform us, and we will add it to this list:)

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon

RRole managerole manager AutAuthorhor DescriptionDescription

Default Role

Manager (built-

in)

Casbin
Supports role hierarchy stored in the Casbin

policy

Session Role

Manager

EDOMO

Systems

Supports role hierarchy stored in the Casbin

policy, with time-range-based sessions

Okta Role

Manager
Casbin Supports role hierarchy stored in Okta

Auth0 Role

Manager
Casbin

Supports role hierarchy stored in Auth0's

Authorization Extension

For developers: all role managers must implement the RoleManager interface. The

Session Role Manager can be used as a reference implementation.

https://github.com/casbin/casbin/blob/master/rbac/default-role-manager/role_manager.go
https://github.com/casbin/casbin/blob/master/rbac/default-role-manager/role_manager.go
https://github.com/casbin/casbin/blob/master/rbac/default-role-manager/role_manager.go
https://github.com/casbin/session-role-manager
https://github.com/casbin/session-role-manager
https://github.com/edomosystems
https://github.com/edomosystems
https://github.com/casbin/okta-role-manager
https://github.com/casbin/okta-role-manager
https://www.okta.com/
https://github.com/casbin/auth0-role-manager
https://github.com/casbin/auth0-role-manager
https://auth0.com/
https://auth0.com/docs/extensions/authorization-extension/v2
https://github.com/casbin/casbin/blob/master/rbac/role_manager.go
https://github.com/casbin/session-role-manager

RRole managerole manager AutAuthorhor DescriptionDescription

Default Role Manager

(built-in)
Casbin

Supports role hierarchy stored in the

Casbin policy

For developers: all role managers must implement the RoleManager interface. The

Default Role Manager can be used as a reference implementation.

RRole managerole manager AutAuthorhor DescriptionDescription

Default Role

Manager (built-

in)

Casbin
Supports role hierarchy stored in the Casbin

policy

Session Role

Manager
Casbin

Supports role hierarchy stored in the Casbin

policy, with time-range-based sessions

For developers: all role managers must implement the RoleManager interface. The

Default Role Manager can be used as a reference implementation.

RRole managerole manager AutAuthorhor DescriptionDescription

Default Role Manager

(built-in)
Casbin

Supports role hierarchy stored in the

Casbin policy

For developers: all role managers must implement the RoleManager interface. The

Default Role Manager can be used as a reference implementation.

https://github.com/casbin/jcasbin/blob/master/src/main/java/org/casbin/jcasbin/rbac/DefaultRoleManager.java
https://github.com/casbin/jcasbin/blob/master/src/main/java/org/casbin/jcasbin/rbac/DefaultRoleManager.java
https://github.com/casbin/jcasbin/blob/master/src/main/java/org/casbin/jcasbin/rbac/RoleManager.java
https://github.com/casbin/jcasbin/blob/master/src/main/java/org/casbin/jcasbin/rbac/DefaultRoleManager.java
https://github.com/casbin/node-casbin/blob/master/src/rbac/defaultRoleManager.ts
https://github.com/casbin/node-casbin/blob/master/src/rbac/defaultRoleManager.ts
https://github.com/casbin/node-casbin/blob/master/src/rbac/defaultRoleManager.ts
https://github.com/node-casbin/session-role-manager
https://github.com/node-casbin/session-role-manager
https://github.com/casbin/node-casbin/blob/master/src/rbac/roleManager.ts
https://github.com/casbin/node-casbin/blob/master/src/rbac/defaultRoleManager.ts
https://github.com/php-casbin/php-casbin/blob/master/src/Rbac/DefaultRoleManager/RoleManager.php
https://github.com/php-casbin/php-casbin/blob/master/src/Rbac/DefaultRoleManager/RoleManager.php
https://github.com/php-casbin/php-casbin/blob/master/src/Rbac/RoleManager.php
https://github.com/php-casbin/php-casbin/blob/master/src/Rbac/DefaultRoleManager/RoleManager.php

RRole managerole manager AutAuthorhor DescriptionDescription

Default Role Manager

(built-in)
Casbin

Supports role hierarchy stored in the

Casbin policy

For developers: all role managers must implement the RoleManager interface. The

Default Role Manager can be used as a reference implementation.

APIAPI
See the API section for details.

https://github.com/casbin/pycasbin/blob/master/casbin/rbac/default_role_manager/role_manager.py
https://github.com/casbin/pycasbin/blob/master/casbin/rbac/default_role_manager/role_manager.py
https://github.com/casbin/pycasbin/blob/master/casbin/rbac/role_manager.py
https://github.com/casbin/pycasbin/blob/master/casbin/rbac/default_role_manager/role_manager.py

MiddlewarMiddlewareses
WWeb frameweb frameworksorks

GoGo JaJavvaa Node.jsNode.js PHPPHP PytPythonhon C++C++ .NET.NET RustRust LuaLua

SwiftSwift

NameName DescriptionDescription

Gin
A HTTP web framework featuring a Martini-like API with much

better performance, via plugin: authz or gin-casbin

Beego
An open-source, high-performance web framework for Go, via

built-in plugin: plugins/authz

Caddy
Fast, cross-platform HTTP/2 web server with automatic HTTPS,

via plugin: caddy-authz

Traefik The cloud native application proxy, via plugin: traefik-auth-plugin

Kratos
Your ultimate Go microservices framework for the cloud-native

era, via plugin: tx7do/kratos-casbin or overstarry/kratos-casbin

Go kit A toolkit for microservices, via built-in plugin: plugins/authz

Fiber
An Express inspired web framework written in Go, via middleware:

casbin in gofiber/contrib or fiber-casbinrest or fiber-boilerplate or

https://github.com/gin-gonic/gin
https://github.com/gin-contrib/authz
https://github.com/maxwellhertz/gin-casbin
https://github.com/beego/beego
https://github.com/astaxie/beego/blob/master/plugins/authz
https://github.com/caddyserver/caddy
https://github.com/casbin/caddy-authz
https://github.com/traefik/traefik
https://github.com/Knight-7/auth-plugin
https://github.com/go-kratos/kratos
https://github.com/tx7do/kratos-casbin
https://github.com/overstarry/kratos-casbin
https://github.com/go-kit/kit
https://github.com/go-kit/kit/tree/master/auth/casbin
https://github.com/gofiber/fiber
https://github.com/gofiber/contrib/tree/main/casbin
https://github.com/prongbang/fiber-casbinrest
https://github.com/sujit-baniya/fiber-boilerplate

NameName DescriptionDescription

gofiber-casbin

Revel
A high productivity, full-stack web framework for the Go language,

via plugin: auth/casbin

Echo
High performance, minimalist Go web framework, via plugin: echo-

authz or echo-casbin or casbinrest or echo-boilerplate

Iris
The fastest web framework for Go in (THIS) Earth. HTTP/2 Ready-

To-GO, via plugin: casbin or iris-middleware-casbin

GoFrame

A modular, powerful, high-performance and enterprise-class

application development framework of Golang, via plugin: gf-

casbin

Negroni Idiomatic HTTP Middleware for Golang, via plugin: negroni-authz

Chi
A lightweight, idiomatic and composable router for building HTTP

services, via plugin: chi-authz

Buffalo
A Go web development eco-system, designed to make your life

easier, via plugin: buffalo-mw-rbac

Macaron
A high productive and modular web framework in Go, via plugin:

authz

DotWeb Simple and easy go web micro framework, via plugin: authz

https://github.com/pcminh0505/gofiber-casbin
https://github.com/revel/revel
https://github.com/revel/modules/tree/master/auth/casbin
https://github.com/labstack/echo
https://github.com/labstack/echo-contrib/tree/master/casbin
https://github.com/labstack/echo-contrib/tree/master/casbin
https://github.com/alexferl/echo-casbin
https://github.com/prongbang/casbinrest
https://github.com/alexferl/echo-boilerplate
https://github.com/kataras/iris
https://github.com/iris-contrib/middleware/tree/master/casbin
https://github.com/kokobing/iris-middleware-casbin
https://github.com/gogf/gf
https://github.com/dobyte/gf-casbin
https://github.com/dobyte/gf-casbin
https://github.com/urfave/negroni
https://github.com/casbin/negroni-authz
https://github.com/pressly/chi
https://github.com/casbin/chi-authz
https://github.com/gobuffalo/buffalo
https://github.com/kgosse/buffalo-mw-rbac
https://github.com/go-macaron/macaron
https://github.com/go-macaron/authz
https://github.com/devfeel/dotweb
https://github.com/devfeel/middleware/tree/master/authz

NameName DescriptionDescription

Tango Micro & pluggable web framework for Go, via plugin: authz

Baa
An express Go web framework with routing, middleware,

dependency injection and http context, via plugin: authz

Tyk
An open source Enterprise API Gateway, supporting REST,

GraphQL, TCP and gRPC protocols, via plugin: tyk-authz

Hertz
Go HTTP framework with high-performance and strong-

extensibility for building micro-services, via plugin: casbin

NameName DescriptionDescription

Spring

Boot

Makes it easy to create Spring-powered applications and services,

via plugin: casbin-spring-boot-starter or Simple SpringBoot

security demo with jCasbin

Apache

Shiro

A powerful and easy-to-use Java security framework that performs

authentication, authorization, cryptography, and session

management, via plugin: shiro-casbin or shiro-jcasbin-spring-boot-

starter

JFinal
A simple, light, rapid, independent and extensible Java WEB + ORM

framework, via plugin: jfinal-authz

Nutz
Web framework (MVC/IOC/AOP/DAO/JSON) for all Java developers,

via plugin: nutz-authz

https://github.com/lunny/tango
https://gitea.com/tango/authz
https://github.com/go-baa/baa
https://github.com/baa-middleware/authz
https://github.com/TykTechnologies/tyk
https://github.com/casbin/tyk-authz
https://github.com/cloudwego/hertz
https://github.com/hertz-contrib/casbin
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://github.com/jcasbin/casbin-spring-boot-starter
https://github.com/jveverka/spring-examples/tree/master/spring-jcasbin
https://github.com/jveverka/spring-examples/tree/master/spring-jcasbin
https://shiro.apache.org/
https://shiro.apache.org/
https://github.com/jcasbin/shiro-casbin
https://github.com/mapleafgo/shiro-jcasbin-spring-boot-starter
https://github.com/mapleafgo/shiro-jcasbin-spring-boot-starter
http://www.jfinal.com/
https://github.com/jcasbin/jfinal-authz
https://nutzam.com/
https://github.com/jcasbin/nutz-authz

NameName DescriptionDescription

mangoo

I/O

An intuitive, lightweight, high performance full stack Java web

framework, via built-in plugin: AuthorizationService.java

NameName DescriptionDescription

Shield
An authZ server and authZ aware reverse-proxy built on top of

casbin.

Express
Fast, unopinionated, minimalist web framework for node, via

plugin: express-authz

Koa
Expressive middleware for node.js using ES2017 async functions,

via plugin: koa-authz or koajs-starter or koa-casbin

LoopBack

4

A highly extensible Node.js and TypeScript framework for

building APIs and microservices, via plugin:

loopback4-authorization

Nest

Progressive Node.js framework for building efficient and scalable

server-side applications on top of TypeScript & JavaScript. via

plugin: nest-authz or nest-casbin or NestJS Casbin Module or

nestjs-casbin or acl-nest or nestjs-casbin-typeorm

Fastify
Fast and low overhead web framework, for Node.js. via plugin:

fastify-casbin or fastify-casbin-rest

Egg
Born to build better enterprise frameworks and apps with Node.js

& Koa, via plugin: egg-authz or egg-zrole

https://github.com/svenkubiak/mangooio
https://github.com/svenkubiak/mangooio
https://github.com/svenkubiak/mangooio/blob/e8c647a3f7c427bce27377025bec074f6d767f50/mangooio-core/src/main/java/io/mangoo/services/AuthorizationService.java
https://github.com/odpf/shield
https://github.com/expressjs/express
https://github.com/node-casbin/express-authz
https://github.com/koajs/koa
https://github.com/node-casbin/koa-authz
https://github.com/djordjep/koajs-starter
https://github.com/zcong1993/koa-casbin
https://github.com/koajs/koa
https://github.com/koajs/koa
https://github.com/sourcefuse/loopback4-authorization
https://nestjs.com/
https://github.com/dreamdevil00/nest-authz
https://github.com/pardjs/nest-casbin
https://github.com/switchit-conseil/nestjs-casbin-module
https://github.com/juicycleff/nestjs-casbin
https://github.com/Twiddlle/acl-nest
https://github.com/0xb4lamx/nestjs-casbin-typeorm
https://github.com/fastify/fastify
https://github.com/nearform/fastify-casbin
https://github.com/nearform/fastify-casbin-rest
https://github.com/eggjs/egg
https://github.com/node-casbin/egg-authz
https://github.com/klren0312/egg-zrole

NameName DescriptionDescription

hapi
The Simple, Secure Framework Developers Trust. via plugin: hapi-

authz

Casbin

JWT

Express

Authorization middleware that uses stateless JWT token to

validate ACL rules using Casbin

Hono
Fast, lightweight, built on Web Standards. via plugin: @hono/

casbin

NameName DescriptionDescription

Laravel The PHP framework for web artisans, via plugin: laravel-authz

Yii PHP

Framework

A fast, secure, and efficient PHP framework, via plugin: yii-

permission or yii-casbin

CakePHP
Build fast, grow solid PHP Framework, via plugin: cake-

permission

CodeIgniter
Associate users with roles and permissions in CodeIgniter4

Web Framework, via plugin: CodeIgniter Permission

ThinkPHP

5.1
The ThinkPHP 5.1 framework, via plugin: think-casbin

ThinkPHP

6.0
The ThinkPHP 6.0 framework, via plugin: think-authz

https://hapi.dev/
https://github.com/node-casbin/hapi-authz
https://github.com/node-casbin/hapi-authz
https://github.com/tiagostutz/casbin-jwt-express
https://github.com/tiagostutz/casbin-jwt-express
https://github.com/tiagostutz/casbin-jwt-express
https://github.com/honojs/hono
https://github.com/honojs/middleware/tree/main/packages/casbin
https://github.com/honojs/middleware/tree/main/packages/casbin
https://laravel.com/
https://github.com/php-casbin/laravel-authz
https://www.yiiframework.com/
https://www.yiiframework.com/
https://github.com/php-casbin/yii-permission
https://github.com/php-casbin/yii-permission
https://github.com/php-casbin/yii-casbin
https://cakephp.org/
https://github.com/php-casbin/cake-permission
https://github.com/php-casbin/cake-permission
https://codeigniter.com/
https://github.com/php-casbin/codeigniter-permission
https://www.thinkphp.cn/
https://www.thinkphp.cn/
https://github.com/php-casbin/think-casbin
https://www.thinkphp.cn/
https://www.thinkphp.cn/
https://github.com/php-casbin/think-authz

NameName DescriptionDescription

Symfony
The Symfony PHP framework, via plugin: symfony-permission

or symfony-casbin

Hyperf

A coroutine framework that focuses on hyperspeed and

flexibility, via plugin: hyperf-permission or donjan-deng/hyperf-

casbin or cblink/hyperf-casbin

EasySwoole

A distributed, persistent memory PHP framework based on the

Swoole extension, via plugin: easyswoole-permission or

easyswoole-hyperfOrm-permission

Slim

A PHP micro framework that helps you quickly write simple yet

powerful web applications and APIs, via plugin: casbin-with-

slim

Phalcon
A full-stack PHP framework delivered as a C-extension, via

plugin: phalcon-permission

Webman
High performance HTTP Service Framework for PHP based on

Workerman, via plugin: webman-permission or webman-casbin

NameName DescriptionDescription

Django
A high-level Python Web framework, via plugin: django-casbin or

django-casbin-auth

Flask
A microframework for Python based on Werkzeug, Jinja 2 and

good intentions, via plugin: flask-authz or Flask-Casbin (3rd-

https://symfony.com/
https://github.com/php-casbin/symfony-permission
https://github.com/videni/symfony-casbin
https://github.com/hyperf/hyperf
https://github.com/php-casbin/hyperf-permission
https://github.com/donjan-deng/hyperf-casbin
https://github.com/donjan-deng/hyperf-casbin
https://github.com/cblink/hyperf-casbin
https://www.easyswoole.com/
https://github.com/php-casbin/easyswoole-permission
https://github.com/ice-leng/easyswoole-hyperfOrm-permission
https://www.slimframework.com/
https://github.com/php-casbin/casbin-with-slim
https://github.com/php-casbin/casbin-with-slim
https://phalcon.io/
https://github.com/php-casbin/phalcon-permission
https://github.com/walkor/webman
https://github.com/php-casbin/webman-permission
https://github.com/sunsgneayo/webman-casbin
https://www.djangoproject.com/
https://github.com/officialpycasbin/django-casbin
https://github.com/officialpycasbin/django-casbin-auth
http://flask.pocoo.org/
https://github.com/officialpycasbin/flask-authz
https://github.com/daymien/Flask-Casbin

NameName DescriptionDescription

party, but maybe more friendly) or rbac-flask

FastAPI

A modern, fast (high-performance), web framework for building

APIs with Python 3.6+ based on standard Python type hints, via

plugin: fastapi-casbin-auth or Fastapi-app

OpenStack
The most widely deployed open source cloud software in the

world, via plugin: openstack-patron

Tornado
Tornado is a Python web framework and asynchronous

networking library, via plugin: tornado-authz

NameName DescriptionDescription

Nginx
A HTTP and reverse proxy server, a mail proxy server, and a generic

TCP/UDP proxy server, via plugin: nginx-casbin-module

NameName DescriptionDescription

ASP.NET

Core

An open-source and cross-platform framework for building

modern cloud based internet connected applications, such as web

apps, IoT apps and mobile backends, via plugin:

Casbin.AspNetCore

ASP.NET

Core

A simple demo of using Casbin at ASP.NET Core framework, via

plugin: CasbinACL-aspNetCore

https://github.com/daymien/Flask-Casbin
https://github.com/daobeng/rbac-flask/tree/flask-casbin
https://github.com/tiangolo/fastapi
https://github.com/officialpycasbin/fastapi-casbin-auth
https://github.com/lqmanh/fastapi-app
https://www.openstack.org/
https://github.com/casbin/openstack-patron
https://www.tornadoweb.org/
https://github.com/officialpycasbin/tornado-authz
https://nginx.org/
https://github.com/casbin-cpp/nginx-casbin-module
https://docs.microsoft.com/en-us/aspnet/core
https://docs.microsoft.com/en-us/aspnet/core
https://github.com/casbin-net/Casbin.AspNetCore
https://docs.microsoft.com/en-us/aspnet/core
https://docs.microsoft.com/en-us/aspnet/core
https://github.com/MustafaMustafayev/CasbinACL-aspNetCore

NameName DescriptionDescription

Actix A Rust actors framework, via plugin: actix-casbin

Actix

web

A small, pragmatic, and extremely fast rust web framework, via

plugin: actix-casbin-auth

Rocket

a web framework for Rust that makes it simple to write fast, secure

web applications without sacrificing flexibility, usability, or type

safety, via plugin: rocket-authz or rocket-casbin-auth

Axum

web

A ergonomic and modular rust web framework, via plugin: axum-

casbin-auth

Poem

web

A full-featured and easy to use web framework with the Rust

programming language, via plugin: poem-casbin

NameName DescriptionDescription

OpenResty
A dynamic web platform based on NGINX and LuaJIT, via plugin:

lua-resty-casbin and casbin-openresty-example

Kong

A cloud-native, platform-agnostic, scalable API Gateway

distinguished for its high performance and extensibility via

plugins, via plugin: kong-authz

APISIX
A dynamic, real-time, high-performance API gateway, via plugin:

authz-casbin

https://github.com/actix/actix
https://github.com/casbin-rs/actix-casbin
https://github.com/actix/actix-web
https://github.com/actix/actix-web
https://github.com/casbin-rs/actix-casbin-auth
https://github.com/SergioBenitez/Rocket
https://github.com/casbin-rs/rocket-authz
https://github.com/0xethsign/rocket-casbin-auth-app
https://github.com/tokio-rs/axum
https://github.com/tokio-rs/axum
https://github.com/casbin-rs/axum-casbin-auth
https://github.com/casbin-rs/axum-casbin-auth
https://github.com/poem-web/poem
https://github.com/poem-web/poem
https://github.com/casbin-rs/poem-casbin
https://openresty.org/
https://github.com/casbin-lua/lua-resty-casbin
https://github.com/rushitote/casbin-openresty-example
https://github.com/Kong/kong
https://github.com/casbin-lua/kong-authz
https://github.com/apache/apisix
https://github.com/apache/apisix/blob/master/docs/en/latest/plugins/authz-casbin.md

NameName DescriptionDescription

Vapor A server-side Swift web framework, via plugin: vapor-authz

Cloud prCloud proovidersviders

Node.jsNode.js

NameName DescriptionDescription

Okta
One trusted platform to secure every identity, via plugin: casbin-

spring-boot-demo

Auth0
An easy to implement, adaptable authentication and authorization

platform, via plugin: casbin-auth0-rbac

https://github.com/vapor/vapor
https://github.com/SwiftCasbin/vapor-authz
https://okta.com/
https://github.com/myriad-personal/casbin-spring-boot-demo
https://github.com/myriad-personal/casbin-spring-boot-demo
https://auth0.com/
https://auth0.com/

GraphQL MiddlewarGraphQL Middlewareses
Casbin follows the officially suggested way to provide authorization for GraphQL

endpoints by having a single source of truth for authorization: https://graphql.org/learn/

authorization/. In other words, Casbin should be placed between the GraphQL layer and

your business logic.

SupporSupportted GraphQL Middlewared GraphQL Middlewareses
A complete list of Casbin GraphQL middlewares is provided below. Any third-party

contributions on a new GraphQL middleware are welcomed. Please inform us, and we

will add it to this list:)

GoGo Node.jsNode.js PytPythonhon

// Casbin authorization logic lives inside postRepository

var postRepository = require('postRepository');

var postType = new GraphQLObjectType({

name: 'Post',

fields: {

body: {

type: GraphQLString,

resolve: (post, args, context, { rootValue }) => {

return postRepository.getBody(context.user, post);

}

}

}

});

https://graphql.org/learn/authorization/
https://graphql.org/learn/authorization/

MiddlewarMiddlewaree
GraphQLGraphQL

ImplementationImplementation
AutAuthorhor DescriptionDescription

graphql-authz graphql Casbin

An

authorization

middleware for

graphql-go

graphql-casbin graphql @esmaeilpour

An

implementation

of using

Graphql and

Casbin

together

gqlgen_casbin_RBAC_example gqlgen @WenyXu (empty)

MiddlewarMiddlewaree
GraphQLGraphQL

ImplementationImplementation
AutAuthorhor DescriptionDescription

graphql-

authz
GraphQL.js Casbin

A Casbin authorization middleware

for GraphQL.js

MiddlewarMiddlewaree
GraphQLGraphQL

ImplementationImplementation
AutAuthorhor DescriptionDescription

graphql-

authz

GraphQL-core

3
@Checho3388

A Casbin authorization

middleware for GraphQL-core 3

https://github.com/casbin/graphql-authz
https://github.com/graphql-go/graphql
https://github.com/esmaeilpour/graphql-casbin
https://github.com/graphql-go/graphql
https://github.com/esmaeilpour
https://github.com/WenyXu/gqlgen_casbin_RBAC_example
https://github.com/99designs/gqlgen
https://github.com/WenyXu
https://github.com/node-casbin/graphql-authz
https://github.com/node-casbin/graphql-authz
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/Checho3388/graphql-authz
https://github.com/Checho3388/graphql-authz
https://github.com/graphql-python/graphql-core
https://github.com/graphql-python/graphql-core
https://github.com/Checho3388
https://github.com/graphql-python/graphql-core

Cloud NativCloud Native Middleware Middlewareses
Cloud NativCloud Native Pre Projectojectss

GoGo Node.jsNode.js

PrProjectoject AutAuthorhor DescriptionDescription

k8s-authz Casbin Authorization middleware for Kubernetes

envoy-authz Casbin Authorization middleware for Istio and Envoy

kubesphere-authz Casbin Authorization middleware for kubeSphere

PrProjectoject AutAuthorhor DescriptionDescription

ODPF

Shield

Open Data

Platform

ODPF Shield is a cloud native role-based

authorization-aware reverse-proxy service.

https://github.com/casbin/k8s-authz
https://kubernetes.io/
https://github.com/casbin/envoy-authz
https://istio.io/
https://envoyproxy.io/
https://github.com/casbin/kubesphere-authz
https://kubesphere.io/
https://github.com/odpf/shield
https://github.com/odpf/shield
https://github.com/odpf
https://github.com/odpf

APIAPI

📄📄 API Ov API Overerviewview

Casbin API Usage

📄📄 Management API Management API

The primitive API that provides full support for Casbin policy management

📄📄 RBA RBAC APIC API

A more friendly API for RBAC. This API is a subset of Management API. The RBAC users could use this API to simplify the code

📄📄 RBA RBAC witC with Domains APIh Domains API

A more user-friendly API for RBAC with domains. This API is a subset of the Management API. RBAC users can use this API to simplify their code.

📄📄 RBA RBAC witC with Conditions APIh Conditions API

A more user-friendly API for RBAC with conditions.

📄📄 R RoleManager APIoleManager API

The RoleManager API provides an interface for defining operations to manage roles. The addition of a matching function to the RoleManager allows the use of wildcards…

API OvAPI Overerviewview
This overview only shows you how to use Casbin APIs and doesn't explain how

Casbin is installed or how it works. You can find those tutorials here: Installation of

Casbin and How Casbin Works. So, when you start reading this tutorial, we

assume that you have fully installed and imported Casbin into your code.

EnfEnfororce APIce API
Let's start with the Enforce APIs of Casbin. We will load a RBAC model from

model.conf and load policies from policy.csv . You can learn about the Model

syntax here, and we won't discuss it in this tutorial. We assume that you can

understand the config files given below:

model.conf

[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[role_definition]

g = _, _

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

policy.csv

After reading the config files, please read the following code.

This code loads the access control model and policies from local files. The

function casbin.NewEnforcer() will return an enforcer. It will recognize its two

parameters as file paths and load the files from there. Errors occurred in the

process are stored in the variable err . This code uses the default adapter to load

the model and policies, and of course, you can achieve the same result by using a

third-party adapter.

The code ok, err := enforcer.Enforce("alice", "data1", "read") is used

to confirm access permissions. If Alice can access data1 with the read operation,

the returned value of ok will be true ; otherwise, it will be false . In this

example, the value of ok is true .

p, admin, data1, read

p, admin, data1, write

p, admin, data2, read

p, admin, data2, write

p, alice, data1, read

p, bob, data2, write

g, amber, admin

g, abc, admin

// Load information from files.

enforcer, err := casbin.NewEnforcer("./example/model.conf",

"./example/policy.csv")

if err != nil {

log.Fatalf("Error, detail: %s", err)

}

ok, err := enforcer.Enforce("alice", "data1", "read")

EnfEnfororceEx APIceEx API
Sometimes you may wonder which policy allowed the request, so we have

prepared the function EnforceEx() . You can use it like this:

The EnforceEx() function will return the exact policy string in the return value

reason . In this example, amber is an admin role, so the policy p, admin,

data1, read allowed this request to be true . The output of this code is in the

comment.

Casbin has provided many APIs similar to this one. These APIs add some extra

functions to the basic ones. They include:

• ok, err := enforcer.EnforceWithMatcher(matcher, request)

This function uses a matcher.

• ok, reason, err := enforcer.EnforceExWithMatcher(matcher,

request)

This is a combination of EnforceWithMatcher() and EnforceEx() .

• boolArray, err := enforcer.BatchEnforce(requests)

This function allows for a list of jobs and returns an array.

This is a simple use case of Casbin. You can use Casbin to start an authorization

server using these APIs. We will show you some other types of APIs in the

ok, reason, err := enforcer.EnforceEx("amber", "data1", "read")

fmt.Println(ok, reason) // true [admin data1 read]

following paragraphs.

Management APIManagement API

Get APIGet API

These APIs are used to retrieve specific objects in policies. In this example, we are

loading an enforcer and retrieving something from it.

Please take a look at the following code:

Similar to the previous example, the first four lines are used to load necessary

information from local files. We won't discuss that here any further.

The code allSubjects := enforcer.GetAllSubjects() retrieves all the

subjects in the policy file and returns them as an array. We then print that array.

Typically, the output of the code should be:

You can also change the function GetAllSubjects() to

GetAllNamedSubjects() to get the list of subjects that appear in the current

enforcer, err := casbin.NewEnforcer("./example/model.conf",

"./example/policy.csv")

if err != nil {

fmt.Printf("Error, details: %s\n", err)

}

allSubjects := enforcer.GetAllSubjects()

fmt.Println(allSubjects)

[admin alice bob]

named policy.

Similarly, we have prepared GetAll functions for Objects, Actions, Roles . To

access these functions, you simply need to replace the word Subject in the

function name with the desired category.

Additionally, there are more getters available for policies. The method of calling

and the return values are similar to the ones mentioned above.

• policy = e.GetPolicy() retrieves all the authorization rules in the policy.

• filteredPolicy := e.GetFilteredPolicy(0, "alice") retrieves all the

authorization rules in the policy with specified field filters.

• namedPolicy := e.GetNamedPolicy("p") retrieves all the authorization

rules in the named policy.

• filteredNamedPolicy = e.GetFilteredNamedPolicy("p", 0, "bob")

retrieves all the authorization rules in the named policy with specified field

filters.

• groupingPolicy := e.GetGroupingPolicy() retrieves all the role

inheritance rules in the policy.

• filteredGroupingPolicy := e.GetFilteredGroupingPolicy(0,

"alice") retrieves all the role inheritance rules in the policy with specified

field filters.

• namedGroupingPolicy := e.GetNamedGroupingPolicy("g") retrieves all

the role inheritance rules in the policy.

• namedGroupingPolicy := e.GetFilteredNamedGroupingPolicy("g", 0,

"alice") retrieves all the role inheritance rules in the policy with specified

field filters.

Add, DeletAdd, Delete, Update, Update APIe API

Casbin provides a variety of APIs for dynamically adding, deleting, or modifying

policies at runtime.

The following code demonstrates how to add, remove, and update policies, as

well as how to check if a policy exists:

By using these APIs, you can edit your policies dynamically. Similarly, we have

provided similar APIs for FilteredPolicy, NamedPolicy,

FilteredNamedPolicy, GroupingPolicy, NamedGroupingPolicy,

// load information from files

enforcer, err := casbin.NewEnforcer("./example/model.conf",

"./example/policy.csv")

if err != nil {

fmt.Printf("Error, details: %s\n", err)

}

// add a policy and use HasPolicy() to confirm

enforcer.AddPolicy("added_user", "data1", "read")

hasPolicy := enforcer.HasPolicy("added_user", "data1", "read")

fmt.Println(hasPolicy) // true, the policy was added

successfully

// remove a policy and use HasPolicy() to confirm

enforcer.RemovePolicy("alice", "data1", "read")

hasPolicy = enforcer.HasPolicy("alice", "data1", "read")

fmt.Println(hasPolicy) // false, the policy was removed

successfully

// update a policy and use HasPolicy() to confirm

enforcer.UpdatePolicy([]string{"added_user", "data1", "read"},

[]string{"added_user", "data1", "write"})

hasPolicy = enforcer.HasPolicy("added_user", "data1", "read")

fmt.Println(hasPolicy) // false, the original policy has expired

hasPolicy = enforcer.HasPolicy("added_user", "data1", "write")

fmt.Println(hasPolicy) // true, the new policy is in effect

FilteredGroupingPolicy, FilteredNamedGroupingPolicy . To use them,

simply replace the word Policy in the function name with the appropriate

category.

Furthermore, by changing the parameters to arrays, you can perform batch editing

of your policies.

For example, consider functions like this:

If we change Policy to Policies and modify the parameters as follows:

then we can perform batch editing of these policies.

The same operations can also be applied to GroupingPolicy,

NamedGroupingPolicy .

AddEx APIAddEx API

Casbin provides the AddEx series of APIs to help users add rules in batches.

enforcer.UpdatePolicy([]string{"eve", "data3", "read"},

[]string{"eve", "data3", "write"})

enforcer.UpdatePolicies([][]string{{"eve", "data3", "read"},

{"jack", "data3", "read"}}, [][]string{{"eve", "data3",

"write"}, {"jack", "data3", "write"}})

AddPoliciesEx(rules [][]string) (bool, error)

AddNamedPoliciesEx(ptype string, rules [][]string) (bool, error)

AddGroupingPoliciesEx(rules [][]string) (bool, error)

AddNamedGroupingPoliciesEx(ptype string, rules [][]string)

The difference between these methods and the methods without the Ex suffix is

that if one of the rules already exists, they will continue checking the next rule

instead of returning false immediately.

For example, let's compare AddPolicies and AddPoliciesEx .

You can run and observe the following code by copying it into the test under

casbin.

func TestDemo(t *testing.T) {

e, err := NewEnforcer("examples/basic_model.conf",

"examples/basic_policy.csv")

if err != nil {

fmt.Printf("Error, details: %s\n", err)

}

e.ClearPolicy()

e.AddPolicy("user1", "data1", "read")

fmt.Println(e.GetPolicy())

testGetPolicy(t, e, [][]string{{"user1", "data1", "read"}})

// policy {"user1", "data1", "read"} now exists

// Use AddPolicies to add rules in batches

ok, _ := e.AddPolicies([][]string{{"user1", "data1",

"read"}, {"user2", "data2", "read"}})

fmt.Println(e.GetPolicy())

// {"user2", "data2", "read"} failed to add because

{"user1", "data1", "read"} already exists

// AddPolicies returns false and no other policies are

checked, even though they may not exist in the existing ruleset

// ok == false

fmt.Println(ok)

testGetPolicy(t, e, [][]string{{"user1", "data1", "read"}})

// Use AddPoliciesEx to add rules in batches

RBARBAC APIC API
Casbin provides some APIs for you to modify the RBAC model and policies. If you

are familiar with RBAC, you can easily use these APIs.

Here, we only show you how to use the RBAC APIs of Casbin and won't talk about

RBAC itself. You can get more details here.

We use the following code to load the model and policies, just like before.

Then, we can use an instance of the Enforcer enforcer to access these APIs.

GetRolesForUser() returns an array that contains all the roles that amber has. In

this example, amber has only one role, which is admin, so the array roles is

[admin] . Similarly, you can use GetUsersForRole() to get the users who

belong to a role. The return value of this function is also an array.

enforcer, err := casbin.NewEnforcer("./example/model.conf",

"./example/policy.csv")

if err != nil {

fmt.Printf("Error, details: %s\n", err)

}

roles, err := enforcer.GetRolesForUser("amber")

fmt.Println(roles) // [admin]

users, err := enforcer.GetUsersForRole("admin")

fmt.Println(users) // [amber abc]

enforcer.HasRoleForUser("amber", "admin") // true

You can use HasRoleForUser() to confirm whether the user belongs to the role.

In this example, amber is a member of admin, so the return value of the function is

true .

You can use DeletePermission() to delete a permission.

And use DeletePermissionForUser() to delete a permission for a user.

Casbin has many APIs like this. Their calling methods and return values have the

same style as the above APIs. You can find these APIs in the next documents.

fmt.Println(enforcer.Enforce("bob", "data2", "write")) // true

enforcer.DeletePermission("data2", "write")

fmt.Println(enforcer.Enforce("bob", "data2", "write")) // false

fmt.Println(enforcer.Enforce("alice", "data1", "read")) // true

enforcer.DeletePermissionForUser("alice", "data1", "read")

fmt.Println(enforcer.Enforce("alice", "data1", "read")) // false

Management APIManagement API
The primitive API that provides full support for Casbin policy management.

FiltFilterered APIed API
Almost all filtered api has the same parameters (fieldIndex int, fieldValues

...string) . fieldIndex is the index where matching start, fieldValues denotes the

values result should have. Note that empty string in fieldValues could be any word.

Example:

p, alice, book, read

p, bob, book, read

p, bob, book, write

p, alice, pen, get

p, bob, pen ,get

e.GetFilteredPolicy(1, "book") // will return: [[alice book read] [bob

book read] [bob book write]]

e.GetFilteredPolicy(1, "book", "read") // will return: [[alice book

read] [bob book read]]

e.GetFilteredPolicy(0, "alice", "", "read") // will return: [[alice

book read]]

e.GetFilteredPolicy(0, "alice") // will return: [[alice book read]

[alice pen get]]

RRefefererenceence
global variable e is Enforcer instance.

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

Enforce()

Enforce decides whether a "subject" can access a "object" with the operation "action",

input parameters are usually: (sub, obj, act).

For example:

e, err := NewEnforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv")

const e = await newEnforcer('examples/rbac_model.conf', 'examples/

rbac_policy.csv')

$e = new Enforcer('examples/rbac_model.conf', 'examples/

rbac_policy.csv');

e = casbin.Enforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv")

var e = new Enforcer("path/to/model.conf", "path/to/policy.csv");

let mut e = Enforce::new("examples/rbac_model.conf", "examples/

rbac_policy.csv").await?;

Enforcer e = new Enforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv");

GoGo Node.jsNode.js PHPPHP PytPythonhon JaJavvaa

EnforceWithMatcher()

EnforceWithMatcher use a custom matcher to decides whether a "subject" can access a

"object" with the operation "action", input parameters are usually: (matcher, sub, obj, act),

use model matcher by default when matcher is "".

For example:

GoGo PHPPHP PytPythonhon JaJavvaa

ok, err := e.Enforce(request)

const ok = await e.enforce(request);

$ok = $e->enforcer($request);

ok = e.enforcer(request)

boolean ok = e.enforce(request);

ok, err := e.EnforceWithMatcher(matcher, request)

$ok = $e->enforceWithMatcher($matcher, $request);

ok = e.enforce_with_matcher(matcher, request)

boolean ok = e.enforceWithMatcher(matcher, request);

EnforceEx()

EnforceEx explain enforcement by informing matched rules.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon

EnforceExWithMatcher()

EnforceExWithMatcher use a custom matcher and explain enforcement by informing

matched rules.

For example:

GoGo

BatchEnforce()

BatchEnforce enforces each request and returns result in a bool array

ok, reason, err := e.EnforceEx(request)

const ok = await e.enforceEx(request);

list($ok, $reason) = $e->enforceEx($request);

ok, reason = e.enforce_ex(request)

ok, reason, err := e.EnforceExWithMatcher(matcher, request)

For example:

GoGo Node.jsNode.js JaJavvaa

GetAllSubjects()

GetAllSubjects gets the list of subjects that show up in the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

boolArray, err := e.BatchEnforce(requests)

const boolArray = await e.batchEnforce(requests);

List<Boolean> boolArray = e.batchEnforce(requests);

allSubjects := e.GetAllSubjects()

const allSubjects = await e.getAllSubjects()

$allSubjects = $e->getAllSubjects();

all_subjects = e.get_all_subjects()

var allSubjects = e.GetAllSubjects();

let all_subjects = e.get_all_subjects();

List<String> allSubjects = e.getAllSubjects();

GetAllNamedSubjects()

GetAllNamedSubjects gets the list of subjects that show up in the current named policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetAllObjects()

GetAllObjects gets the list of objects that show up in the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

allNamedSubjects := e.GetAllNamedSubjects("p")

const allNamedSubjects = await e.getAllNamedSubjects('p')

$allNamedSubjects = $e->getAllNamedSubjects("p");

all_named_subjects = e.get_all_named_subjects("p")

var allNamedSubjects = e.GetAllNamedSubjects("p");

let all_named_subjects = e.get_all_named_subjects("p");

List<String> allNamedSubjects = e.getAllNamedSubjects("p");

GetAllNamedObjects()

GetAllNamedObjects gets the list of objects that show up in the current named policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

allObjects := e.GetAllObjects()

const allObjects = await e.getAllObjects()

$allObjects = $e->getAllObjects();

all_objects = e.get_all_objects()

var allObjects = e.GetAllObjects();

let all_objects = e.get_all_objects();

List<String> allObjects = e.getAllObjects();

allNamedObjects := e.GetAllNamedObjects("p")

const allNamedObjects = await e.getAllNamedObjects('p')

$allNamedObjects = $e->getAllNamedObjects("p");

all_named_objects = e.get_all_named_objects("p")

var allNamedObjects = e.GetAllNamedObjects("p");

GetAllActions()

GetAllActions gets the list of actions that show up in the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetAllNamedActions()

GetAllNamedActions gets the list of actions that show up in the current named policy.

For example:

let all_named_objects = e.get_all_named_objects("p");

List<String> allNamedObjects = e.getAllNamedObjects("p");

allActions := e.GetAllActions()

const allActions = await e.getAllActions()

$allActions = $e->getAllActions();

all_actions = e.get_all_actions()

var allActions = e.GetAllActions();

let all_actions = e.get_all_actions();

List<String> allActions = e.getAllActions();

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetAllRoles()

GetAllRoles gets the list of roles that show up in the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

allNamedActions := e.GetAllNamedActions("p")

const allNamedActions = await e.getAllNamedActions('p')

$allNamedActions = $e->getAllNamedActions("p");

all_named_actions = e.get_all_named_actions("p")

var allNamedActions = e.GetAllNamedActions("p");

let all_named_actions = e.get_all_named_actions("p");

List<String> allNamedActions = e.getAllNamedActions("p");

allRoles = e.GetAllRoles()

const allRoles = await e.getAllRoles()

$allRoles = $e->getAllRoles();

GetAllNamedRoles()

GetAllNamedRoles gets the list of roles that show up in the current named policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

all_roles = e.get_all_roles()

var allRoles = e.GetAllRoles();

let all_roles = e.get_all_roles();

List<String> allRoles = e.getAllRoles();

allNamedRoles := e.GetAllNamedRoles("g")

const allNamedRoles = await e.getAllNamedRoles('g')

$allNamedRoles = $e->getAllNamedRoles('g');

all_named_roles = e.get_all_named_roles("g")

var allNamedRoles = e.GetAllNamedRoles("g");

let all_named_roles = e.get_all_named_roles("g");

List<String> allNamedRoles = e.getAllNamedRoles("g");

GetPolicy()

GetPolicy gets all the authorization rules in the policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetFilteredPolicy()

GetFilteredPolicy gets all the authorization rules in the policy, field filters can be

specified.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

policy = e.GetPolicy()

const policy = await e.getPolicy()

$policy = $e->getPolicy();

policy = e.get_policy()

var policy = e.GetPolicy();

let policy = e.get_policy();

List<List<String>> policy = e.getPolicy();

GetNamedPolicy()

GetNamedPolicy gets all the authorization rules in the named policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

filteredPolicy := e.GetFilteredPolicy(0, "alice")

const filteredPolicy = await e.getFilteredPolicy(0, 'alice')

$filteredPolicy = $e->getFilteredPolicy(0, "alice");

filtered_policy = e.get_filtered_policy(0, "alice")

var filteredPolicy = e.GetFilteredPolicy(0, "alice");

let filtered_policy = e.get_filtered_policy(0,

vec!["alice".to_owned()]);

List<List<String>> filteredPolicy = e.getFilteredPolicy(0, "alice");

namedPolicy := e.GetNamedPolicy("p")

const namedPolicy = await e.getNamedPolicy('p')

$namedPolicy = $e->getNamedPolicy("p");

named_policy = e.get_named_policy("p")

GetFilteredNamedPolicy()

GetFilteredNamedPolicy gets all the authorization rules in the named policy, field filters

can be specified.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

var namedPolicy = e.GetNamedPolicy("p");

let named_policy = e.get_named_policy("p");

List<List<String>> namedPolicy = e.getNamedPolicy("p");

filteredNamedPolicy = e.GetFilteredNamedPolicy("p", 0, "bob")

const filteredNamedPolicy = await e.getFilteredNamedPolicy('p', 0,

'bob')

$filteredNamedPolicy = $e->getFilteredNamedPolicy("p", 0, "bob");

filtered_named_policy = e.get_filtered_named_policy("p", 0, "alice")

var filteredNamedPolicy = e.GetFilteredNamedPolicy("p", 0, "alice");

let filtered_named_policy = e.get_filtered_named_policy("p", 0,

vec!["bob".to_owned()]);

List<List<String>> filteredNamedPolicy = e.getFilteredNamedPolicy("p",

0, "bob");

GetGroupingPolicy()

GetGroupingPolicy gets all the role inheritance rules in the policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetFilteredGroupingPolicy()

GetFilteredGroupingPolicy gets all the role inheritance rules in the policy, field filters can

be specified.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

groupingPolicy := e.GetGroupingPolicy()

const groupingPolicy = await e.getGroupingPolicy()

$groupingPolicy = $e->getGroupingPolicy();

grouping_policy = e.get_grouping_policy()

var groupingPolicy = e.GetGroupingPolicy();

let grouping_policy = e.get_grouping_policy();

List<List<String>> groupingPolicy = e.getGroupingPolicy();

GetNamedGroupingPolicy()

GetNamedGroupingPolicy gets all the role inheritance rules in the policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

filteredGroupingPolicy := e.GetFilteredGroupingPolicy(0, "alice")

const filteredGroupingPolicy = await e.getFilteredGroupingPolicy(0,

'alice')

$filteredGroupingPolicy = $e->getFilteredGroupingPolicy(0, "alice");

filtered_grouping_policy = e.get_filtered_grouping_policy(0, "alice")

var filteredGroupingPolicy = e.GetFilteredGroupingPolicy(0, "alice");

let filtered_grouping_policy = e.get_filtered_grouping_policy(0,

vec!["alice".to_owned()]);

List<List<String>> filteredGroupingPolicy =

e.getFilteredGroupingPolicy(0, "alice");

namedGroupingPolicy := e.GetNamedGroupingPolicy("g")

const namedGroupingPolicy = await e.getNamedGroupingPolicy('g')

$namedGroupingPolicy = $e->getNamedGroupingPolicy("g");

GetFilteredNamedGroupingPolicy()

GetFilteredNamedGroupingPolicy gets all the role inheritance rules in the policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

named_grouping_policy = e.get_named_grouping_policy("g")

var namedGroupingPolicy = e.GetNamedGroupingPolicy("g");

let named_grouping_policy = e.get_named_grouping_policy("g");

List<List<String>> namedGroupingPolicy = e.getNamedGroupingPolicy("g");

namedGroupingPolicy := e.GetFilteredNamedGroupingPolicy("g", 0,

"alice")

const namedGroupingPolicy = await

e.getFilteredNamedGroupingPolicy('g', 0, 'alice')

$namedGroupingPolicy = $e->getFilteredNamedGroupingPolicy("g", 0,

"alice");

named_grouping_policy = e.get_filtered_named_grouping_policy("g", 0,

"alice")

var namedGroupingPolicy = e.GetFilteredNamedGroupingPolicy("g", 0,

"alice");

let named_grouping_policy = e.get_filtered_named_groupingPolicy("g",

HasPolicy()

HasPolicy determines whether an authorization rule exists.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

HasNamedPolicy()

HasNamedPolicy determines whether a named authorization rule exists.

For example:

List<List<String>> filteredNamedGroupingPolicy =

e.getFilteredNamedGroupingPolicy("g", 0, "alice");

hasPolicy := e.HasPolicy("data2_admin", "data2", "read")

const hasPolicy = await e.hasPolicy('data2_admin', 'data2', 'read')

$hasPolicy = $e->hasPolicy('data2_admin', 'data2', 'read');

has_policy = e.has_policy("data2_admin", "data2", "read")

var hasPolicy = e.HasPolicy("data2_admin", "data2", "read");

let has_policy = e.has_policy(vec!["data2_admin".to_owned(),

"data2".to_owned(), "read".to_owned()]);

boolean hasPolicy = e.hasPolicy("data2_admin", "data2", "read");

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

AddPolicy()

AddPolicy adds an authorization rule to the current policy. If the rule already exists, the

function returns false and the rule will not be added. Otherwise the function returns true

by adding the new rule.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

hasNamedPolicy := e.HasNamedPolicy("p", "data2_admin", "data2", "read")

const hasNamedPolicy = await e.hasNamedPolicy('p', 'data2_admin',

'data2', 'read')

$hasNamedPolicy = $e->hasNamedPolicy("p", "data2_admin", "data2",

"read");

has_named_policy = e.has_named_policy("p", "data2_admin", "data2",

"read")

var hasNamedPolicy = e.HasNamedPolicy("p", "data2_admin", "data2",

"read");

let has_named_policy = e.has_named_policy("p",

vec!["data2_admin".to_owned(), "data2".to_owned(), "read".to_owned()]);

boolean hasNamedPolicy = e.hasNamedPolicy("p", "data2_admin", "data2",

"read");

AddPolicies()

AddPolicies adds authorization rules to the current policy. The operation is atomic in

nature. Hence, if authorization rules consists of rules which are not consistent with the

current policy, the function returns false and no policy rule is added to the current policy.

If all the authorization rules are consistent with the policy rules, the function returns true

and each policy rule is added to the current policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

added := e.AddPolicy('eve', 'data3', 'read')

const p = ['eve', 'data3', 'read']

const added = await e.addPolicy(...p)

$added = $e->addPolicy('eve', 'data3', 'read');

added = e.add_policy("eve", "data3", "read")

var added = e.AddPolicy("eve", "data3", "read");

or

var added = await e.AddPolicyAsync("eve", "data3", "read");

let added = e.add_policy(vec!["eve".to_owned(), "data3".to_owned(),

"read".to_owned()]);

boolean added = e.addPolicy("eve", "data3", "read");

rules := [][] string {

[]string {"jack", "data4", "read"},

const rules = [

['jack', 'data4', 'read'],

['katy', 'data4', 'write'],

['leyo', 'data4', 'read'],

['ham', 'data4', 'write']

];

const areRulesAdded = await e.addPolicies(rules);

rules = [

["jack", "data4", "read"],

["katy", "data4", "write"],

["leyo", "data4", "read"],

["ham", "data4", "write"]

]

are_rules_added = e.add_policies(rules)

let rules = vec![

vec!["jack".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["katy".to_owned(), "data4".to_owned(), "write".to_owned()],

vec!["leyo".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["ham".to_owned(), "data4".to_owned(), "write".to_owned()],

];

let are_rules_added = e.add_policies(rules).await?

String[][] rules = {

{"jack", "data4", "read"},

{"katy", "data4", "write"},

{"leyo", "data4", "read"},

{"ham", "data4", "write"},

};

boolean areRulesAdded = e.addPolicies(rules);

AddPoliciesEx()

AddPoliciesEx adds authorization rules to the current policy. If the rule already exists, the

rule will not be added. But unlike AddPolicies, other non-existent rules are added instead

of returning false directly

For example:

GoGo

AddNamedPolicy()

AddNamedPolicy adds an authorization rule to the current named policy. If the rule

already exists, the function returns false and the rule will not be added. Otherwise the

function returns true by adding the new rule.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

ok, err := e.AddPoliciesEx([][]string{{"user1", "data1", "read"},

{"user2", "data2", "read"}})

added := e.AddNamedPolicy("p", "eve", "data3", "read")

const p = ['eve', 'data3', 'read']

const added = await e.addNamedPolicy('p', ...p)

$added = $e->addNamedPolicy("p", "eve", "data3", "read");

AddNamedPolicies()

AddNamedPolicies adds authorization rules to the current named policy. The operation is

atomic in nature. Hence, if authorization rules consists of rules which are not consistent

with the current policy, the function returns false and no policy rule is added to the

current policy. If all the authorization rules are consistent with the policy rules, the

function returns true and each policy rule is added to the current policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

added = e.add_named_policy("p", "eve", "data3", "read")

var added = e.AddNamedPolicy("p", "eve", "data3", "read");

or

var added = await e.AddNamedPolicyAsync("p", "eve", "data3", "read");

let added = e.add_named_policy("p", vec!["eve".to_owned(),

"data3".to_owned(), "read".to_owned()]).await?;

boolean added = e.addNamedPolicy("p", "eve", "data3", "read");

rules := [][] string {

[]string {"jack", "data4", "read"},

[]string {"katy", "data4", "write"},

[]string {"leyo", "data4", "read"},

[]string {"ham", "data4", "write"},

}

areRulesAdded := e.AddNamedPolicies("p", rules)

const rules = [

AddNamedPoliciesEx()

AddNamedPoliciesEx adds authorization rules to the current named policy. If the rule

already exists, the rule will not be added. But unlike AddNamedPolicies, other non-

existent rules are added instead of returning false directly

For example:

GoGo

rules = [

["jack", "data4", "read"],

["katy", "data4", "write"],

["leyo", "data4", "read"],

["ham", "data4", "write"]

]

are_rules_added = e.add_named_policies("p", rules)

let rules = vec![

vec!["jack".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["katy".to_owned(), "data4".to_owned(), "write".to_owned()],

vec!["leyo".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["ham".to_owned(), "data4".to_owned(), "write".to_owned()],

];

let are_rules_added := e.add_named_policies("p", rules).await?;

List<List<String>> rules = Arrays.asList(

Arrays.asList("jack", "data4", "read"),

Arrays.asList("katy", "data4", "write"),

Arrays.asList("leyo", "data4", "read"),

Arrays.asList("ham", "data4", "write")

);

boolean areRulesAdded = e.addNamedPolicies("p", rules);

SelfAddPoliciesEx()

SelfAddPoliciesEx adds authorization rules to the current named policy with

autoNotifyWatcher disabled. If the rule already exists, the rule will not be added. But

unlike SelfAddPolicies, other non-existent rules are added instead of returning false

directly

For example:

GoGo

RemovePolicy()

RemovePolicy removes an authorization rule from the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

ok, err := e.AddNamedPoliciesEx("p", [][]string{{"user1", "data1",

"read"}, {"user2", "data2", "read"}})

ok, err := e.SelfAddPoliciesEx("p", "p", [][]string{{"user1", "data1",

"read"}, {"user2", "data2", "read"}})

removed := e.RemovePolicy("alice", "data1", "read")

const p = ['alice', 'data1', 'read']

const removed = await e.removePolicy(...p)

RemovePolicies()

RemovePolicies removes authorization rules from the current policy. The operation is

atomic in nature. Hence, if authorization rules consists of rules which are not consistent

with the current policy, the function returns false and no policy rule is removed from the

current policy. If all the authorization rules are consistent with the policy rules, the

function returns true and each policy rule is removed from the current policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

$removed = $e->removePolicy("alice", "data1", "read");

removed = e.remove_policy("alice", "data1", "read")

var removed = e.RemovePolicy("alice", "data1", "read");

or

var removed = await e.RemovePolicyAsync("alice", "data1", "read");

let removed = e.remove_policy(vec!["alice".to_owned(),

"data1".to_owned(), "read".to_owned()]).await?;

boolean removed = e.removePolicy("alice", "data1", "read");

rules := [][] string {

[]string {"jack", "data4", "read"},

[]string {"katy", "data4", "write"},

[]string {"leyo", "data4", "read"},

[]string {"ham", "data4", "write"},

}

areRulesRemoved := e.RemovePolicies(rules)

RemoveFilteredPolicy()

RemoveFilteredPolicy removes an authorization rule from the current policy, field filters

const rules = [

['jack', 'data4', 'read'],

['katy', 'data4', 'write'],

['leyo', 'data4', 'read'],

['ham', 'data4', 'write']

];

const areRulesRemoved = await e.removePolicies(rules);

rules = [

["jack", "data4", "read"],

["katy", "data4", "write"],

["leyo", "data4", "read"],

["ham", "data4", "write"]

]

are_rules_removed = e.remove_policies(rules)

let rules = vec![

vec!["jack".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["katy".to_owned(), "data4".to_owned(), "write".to_owned()],

vec!["leyo".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["ham".to_owned(), "data4".to_owned(), "write".to_owned()],

];

let are_rules_removed = e.remove_policies(rules).await?;

String[][] rules = {

{"jack", "data4", "read"},

{"katy", "data4", "write"},

{"leyo", "data4", "read"},

{"ham", "data4", "write"},

};

boolean areRulesRemoved = e.removePolicies(rules);

can be specified. RemovePolicy removes an authorization rule from the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

RemoveNamedPolicy()

RemoveNamedPolicy removes an authorization rule from the current named policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

removed := e.RemoveFilteredPolicy(0, "alice", "data1", "read")

const p = ['alice', 'data1', 'read']

const removed = await e.removeFilteredPolicy(0, ...p)

$removed = $e->removeFilteredPolicy(0, "alice", "data1", "read");

removed = e.remove_filtered_policy(0, "alice", "data1", "read")

var removed = e.RemoveFilteredPolicy("alice", "data1", "read");

or

var removed = await e.RemoveFilteredPolicyAsync("alice", "data1",

"read");

let removed = e.remove_filtered_policy(0, vec!["alice".to_owned(),

"data1".to_owned(), "read".to_owned()]).await?;

boolean removed = e.removeFilteredPolicy(0, "alice", "data1", "read");

RemoveNamedPolicies()

RemoveNamedPolicies removes authorization rules from the current named policy. The

operation is atomic in nature. Hence, if authorization rules consists of rules which are not

consistent with the current policy, the function returns false and no policy rule is removed

from the current policy. If all the authorization rules are consistent with the policy rules,

the function returns true and each policy rule is removed from the current policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

removed := e.RemoveNamedPolicy("p", "alice", "data1", "read")

const p = ['alice', 'data1', 'read']

const removed = await e.removeNamedPolicy('p', ...p)

$removed = $e->removeNamedPolicy("p", "alice", "data1", "read");

removed = e.remove_named_policy("p", "alice", "data1", "read")

var removed = e.RemoveNamedPolicy("p", "alice", "data1", "read");

or

var removed = await e.RemoveNamedPolicyAsync("p", "alice", "data1",

"read");

let removed = e.remove_named_policy("p", vec!["alice".to_owned(),

"data1".to_owned(), "read".to_owned()]).await?;

boolean removed = e.removeNamedPolicy("p", "alice", "data1", "read");

rules := [][] string {

RemoveFilteredNamedPolicy()

RemoveFilteredNamedPolicy removes an authorization rule from the current named

const rules = [

['jack', 'data4', 'read'],

['katy', 'data4', 'write'],

['leyo', 'data4', 'read'],

['ham', 'data4', 'write']

];

const areRulesRemoved = await e.removeNamedPolicies('p', rules);

rules = [

["jack", "data4", "read"],

["katy", "data4", "write"],

["leyo", "data4", "read"],

["ham", "data4", "write"]

]

are_rules_removed = e.remove_named_policies("p", rules)

let rules = vec![

vec!["jack".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["katy".to_owned(), "data4".to_owned(), "write".to_owned()],

vec!["leyo".to_owned(), "data4".to_owned(), "read".to_owned()],

vec!["ham".to_owned(), "data4".to_owned(), "write".to_owned()],

];

let areRulesRemoved = e.remove_named_policies("p", rules).await?;

List<List<String>> rules = Arrays.asList(

Arrays.asList("jack", "data4", "read"),

Arrays.asList("katy", "data4", "write"),

Arrays.asList("leyo", "data4", "read"),

Arrays.asList("ham", "data4", "write")

);

boolean areRulesRemoved = e.removeNamedPolicies("p", rules);

policy, field filters can be specified.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

HasGroupingPolicy()

HasGroupingPolicy determines whether a role inheritance rule exists.

removed := e.RemoveFilteredNamedPolicy("p", 0, "alice", "data1",

"read")

const p = ['alice', 'data1', 'read']

const removed = await e.removeFilteredNamedPolicy('p', 0, ...p)

$removed = $e->removeFilteredNamedPolicy("p", 0, "alice", "data1",

"read");

removed = e.remove_filtered_named_policy("p", 0, "alice", "data1",

"read")

var removed = e.RemoveFilteredNamedPolicy("p", 0, "alice", "data1",

"read");

or

var removed = e.RemoveFilteredNamedPolicyAync("p", 0, "alice",

"data1", "read");

let removed = e.remove_filtered_named_policy("p", 0,

vec!["alice".to_owned(), "data1".to_owned(),

"read".to_owned()]).await?;

boolean removed = e.removeFilteredNamedPolicy("p", 0, "alice",

"data1", "read");

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

HasNamedGroupingPolicy()

HasNamedGroupingPolicy determines whether a named role inheritance rule exists.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

has := e.HasGroupingPolicy("alice", "data2_admin")

const has = await e.hasGroupingPolicy('alice', 'data2_admin')

$has = $e->hasGroupingPolicy("alice", "data2_admin");

has = e.has_grouping_policy("alice", "data2_admin")

var has = e.HasGroupingPolicy("alice", "data2_admin");

let has = e.has_grouping_policy(vec!["alice".to_owned(),

"data2_admin".to_owned()]);

boolean has = e.hasGroupingPolicy("alice", "data2_admin");

has := e.HasNamedGroupingPolicy("g", "alice", "data2_admin")

const has = await e.hasNamedGroupingPolicy('g', 'alice', 'data2_admin')

AddGroupingPolicy()

AddGroupingPolicy adds a role inheritance rule to the current policy. If the rule already

exists, the function returns false and the rule will not be added. Otherwise the function

returns true by adding the new rule.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

$has = $e->hasNamedGroupingPolicy("g", "alice", "data2_admin");

has = e.has_named_grouping_policy("g", "alice", "data2_admin")

var has = e.HasNamedGroupingPolicy("g", "alice", "data2_admin");

let has = e.has_named_grouping_policy("g", vec!["alice".to_owned(),

"data2_admin".to_owned()]);

boolean has = e.hasNamedGroupingPolicy("g", "alice", "data2_admin");

added := e.AddGroupingPolicy("group1", "data2_admin")

const added = await e.addGroupingPolicy('group1', 'data2_admin')

$added = $e->addGroupingPolicy("group1", "data2_admin");

added = e.add_grouping_policy("group1", "data2_admin")

var added = e.AddGroupingPolicy("group1", "data2_admin");

or

AddGroupingPolicies()

AddGroupingPolicies adds role inheritance rules to the current policy. The operation is

atomic in nature. Hence, if authorization rules consists of rules which are not consistent

with the current policy, the function returns false and no policy rule is added to the

current policy. If all authorization the rules are consistent with the policy rules, the

function returns true and each policy rule is added to the current policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

let added = e.add_grouping_policy(vec!["group1".to_owned(),

"data2_admin".to_owned()]).await?;

boolean added = e.addGroupingPolicy("group1", "data2_admin");

rules := [][] string {

[]string {"ham", "data4_admin"},

[]string {"jack", "data5_admin"},

}

areRulesAdded := e.AddGroupingPolicies(rules)

const groupingRules = [

['ham', 'data4_admin'],

['jack', 'data5_admin']

];

const areRulesAdded = await e.addGroupingPolicies(groupingRules);

rules = [

["ham", "data4_admin"],

AddGroupingPoliciesEx()

AddGroupingPoliciesEx adds role inheritance rules to the current policy. If the rule already

exists, the rule will not be added. But unlike AddGroupingPolicies, other non-existent

rules are added instead of returning false directly

For example:

GoGo

AddNamedGroupingPolicy()

AddNamedGroupingPolicy adds a named role inheritance rule to the current policy. If the

rule already exists, the function returns false and the rule will not be added. Otherwise

the function returns true by adding the new rule.

For example:

let rules = vec![

vec!["ham".to_owned(), "data4_admin".to_owned()],

vec!["jack".to_owned(), "data5_admin".to_owned()],

];

let areRulesAdded = e.add_grouping_policies(rules).await?;

String[][] groupingRules = {

{"ham", "data4_admin"},

{"jack", "data5_admin"}

};

boolean areRulesAdded = e.addGroupingPolicies(groupingRules);

ok, err := e.AddGroupingPoliciesEx([][]string{{"user1", "member"},

{"user2", "member"}})

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

AddNamedGroupingPolicies()

AddNamedGroupingPolicies adds named role inheritance rules to the current policy. The

operation is atomic in nature. Hence, if authorization rules consists of rules which are not

consistent with the current policy, the function returns false and no policy rule is added to

the current policy. If all the authorization rules are consistent with the policy rules, the

function returns true and each policy rule is added to the current policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

added := e.AddNamedGroupingPolicy("g", "group1", "data2_admin")

const added = await e.addNamedGroupingPolicy('g', 'group1',

'data2_admin')

$added = $e->addNamedGroupingPolicy("g", "group1", "data2_admin");

added = e.add_named_grouping_policy("g", "group1", "data2_admin")

var added = e.AddNamedGroupingPolicy("g", "group1", "data2_admin");

or

var added = await e.AddNamedGroupingPolicyAsync("g", "group1",

"data2_admin");

let added = e.add_named_grouping_policy("g", vec!["group1".to_owned(),

"data2_admin".to_owned()]).await?;

boolean added = e.addNamedGroupingPolicy("g", "group1", "data2_admin");

rules := [][] string {

[]string {"ham", "data4_admin"},

[]string {"jack", "data5_admin"},

}

areRulesAdded := e.AddNamedGroupingPolicies("g", rules)

const groupingRules = [

['ham', 'data4_admin'],

['jack', 'data5_admin']

];

const areRulesAdded = await e.addNamedGroupingPolicies('g',

groupingRules);

rules = [

["ham", "data4_admin"],

["jack", "data5_admin"]

]

are_rules_added = e.add_named_grouping_policies("g", rules)

let rules = vec![

vec!["ham".to_owned(), "data4_admin".to_owned()],

vec!["jack".to_owned(), "data5_admin".to_owned()],

];

let are_rules_added = e.add_named_grouping_policies("g", rules).await?;

String[][] groupingRules = {

{"ham", "data4_admin"},

{"jack", "data5_admin"}

};

boolean areRulesAdded = e.addNamedGroupingPolicies("g", groupingRules);

AddNamedGroupingPoliciesEx()

AddNamedGroupingPoliciesEx adds named role inheritance rules to the current policy. If

the rule already exists, the rule will not be added. But unlike AddNamedGroupingPolicies,

other non-existent rules are added instead of returning false directly

For example:

GoGo

RemoveGroupingPolicy()

RemoveGroupingPolicy removes a role inheritance rule from the current policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

ok, err := e.AddNamedGroupingPoliciesEx("g", [][]string{{"user1",

"member"}, {"user2", "member"}})

removed := e.RemoveGroupingPolicy("alice", "data2_admin")

const removed = await e.removeGroupingPolicy('alice', 'data2_admin')

$removed = $e->removeGroupingPolicy("alice", "data2_admin");

removed = e.remove_grouping_policy("alice", "data2_admin")

var removed = e.RemoveGroupingPolicy("alice", "data2_admin");

RemoveGroupingPolicies()

RemoveGroupingPolicies removes role inheritance rules from the current policy. The

operation is atomic in nature. Hence, if authorization rules consists of rules which are not

consistent with the current policy, the function returns false and no policy rule is removed

from the current policy. If all the authorization rules are consistent with the policy rules,

the function returns true and each policy rule is removed from the current policy.

For example:

GoGo Node.jsNode.js RustRust PytPythonhon JaJavvaa

let removed = e.remove_grouping_policy(vec!["alice".to_owned(),

"data2_admin".to_owned()]).await?;

boolean removed = e.removeGroupingPolicy("alice", "data2_admin");

rules := [][] string {

[]string {"ham", "data4_admin"},

[]string {"jack", "data5_admin"},

}

areRulesRemoved := e.RemoveGroupingPolicies(rules)

const groupingRules = [

['ham', 'data4_admin'],

['jack', 'data5_admin']

];

const areRulesRemoved = await e.removeGroupingPolicies(groupingRules);

let rules = vec![

vec!["ham".to_owned(), "data4_admin".to_owned()],

RemoveFilteredGroupingPolicy()

RemoveFilteredGroupingPolicy removes a role inheritance rule from the current policy,

field filters can be specified.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

rules = [

["ham", "data4_admin"],

["jack", "data5_admin"]

]

are_rules_removed = e.remove_grouping_policies(rules)

String[][] groupingRules = {

{"ham", "data4_admin"},

{"jack", "data5_admin"}

};

boolean areRulesRemoved = e.removeGroupingPolicies(groupingRules);

removed := e.RemoveFilteredGroupingPolicy(0, "alice")

const removed = await e.removeFilteredGroupingPolicy(0, 'alice')

$removed = $e->removeFilteredGroupingPolicy(0, "alice");

removed = e.remove_filtered_grouping_policy(0, "alice")

var removed = e.RemoveFilteredGroupingPolicy(0, "alice");

or

var removed = await e.RemoveFilteredGroupingPolicyAsync(0, "alice");

RemoveNamedGroupingPolicy()

RemoveNamedGroupingPolicy removes a role inheritance rule from the current named

policy.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

let removed = e.remove_filtered_grouping_policy(0,

vec!["alice".to_owned()]).await?;

boolean removed = e.removeFilteredGroupingPolicy(0, "alice");

removed := e.RemoveNamedGroupingPolicy("g", "alice")

const removed = await e.removeNamedGroupingPolicy('g', 'alice')

$removed = $e->removeNamedGroupingPolicy("g", "alice");

removed = e.remove_named_grouping_policy("g", "alice", "data2_admin")

var removed = e.RemoveNamedGroupingPolicy("g", "alice");

or

var removed = await e.RemoveNamedGroupingPolicyAsync("g", "alice");

let removed = e.remove_named_grouping_policy("g",

vec!["alice".to_owned()]).await?;

boolean removed = e.removeNamedGroupingPolicy("g", "alice");

RemoveNamedGroupingPolicies()

RemoveNamedGroupingPolicies removes named role inheritance rules from the current

policy. The operation is atomic in nature. Hence, if authorization rules consists of rules

which are not consistent with the current policy, the function returns false and no policy

rule is removed from the current policy. If all the authorization rules are consistent with

the policy rules, the function returns true and each policy rule is removed from the current

policy.

For example:

GoGo Node.jsNode.js PytPythonhon RustRust JaJavvaa

rules := [][] string {

[]string {"ham", "data4_admin"},

[]string {"jack", "data5_admin"},

}

areRulesRemoved := e.RemoveNamedGroupingPolicies("g", rules)

const groupingRules = [

['ham', 'data4_admin'],

['jack', 'data5_admin']

];

const areRulesRemoved = await e.removeNamedGroupingPolicies('g',

groupingRules);

rules = [

["ham", "data4_admin"],

["jack", "data5_admin"]

]

are_rules_removed = e.remove_named_grouping_policies("g", rules)

RemoveFilteredNamedGroupingPolicy()

RemoveFilteredNamedGroupingPolicy removes a role inheritance rule from the current

named policy, field filters can be specified.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

let rules = vec![

vec!["ham".to_owned(), "data4_admin".to_owned()],

vec!["jack".to_owned(), "data5_admin".to_owned()],

];

let are_rules_removed = e.remove_named_grouping_policies("g",

rules).await?;

String[][] groupingRules = {

{"ham", "data4_admin"},

{"jack", "data5_admin"}

};

boolean areRulesRemoved = e.removeNamedGroupingPolicies("g",

groupingRules);

removed := e.RemoveFilteredNamedGroupingPolicy("g", 0, "alice")

const removed = await e.removeFilteredNamedGroupingPolicy('g', 0,

'alice')

$removed = $e->removeFilteredNamedGroupingPolicy("g", 0, "alice");

removed = e.remove_filtered_named_grouping_policy("g", 0, "alice")

UpdatePolicy()

UpdatePolicy update a old policy to new policy.

For example:

GoGo Node.jsNode.js PytPythonhon JaJavvaa

var removed = e.RemoveFilteredNamedGroupingPolicy("g", 0, "alice");

or

var removed = await e.RemoveFilteredNamedGroupingPolicyAsync("g", 0,

"alice");

let removed = e.remove_filtered_named_groupingPolicy("g", 0,

vec!["alice".to_owned()]).await?;

boolean removed = e.removeFilteredNamedGroupingPolicy("g", 0, "alice");

updated, err := e.UpdatePolicy([]string{"eve", "data3", "read"},

[]string{"eve", "data3", "write"})

const update = await e.updatePolicy(["eve", "data3", "read"], ["eve",

"data3", "write"]);

updated = e.update_policy(["eve", "data3", "read"], ["eve", "data3",

"write"])

boolean updated = e.updatePolicy(Arrays.asList("eve", "data3",

"read"), Arrays.asList("eve", "data3", "write"));

UpdatePolicies()

UpdatePolicies updates all old policies to new policies.

For example:

GoGo PytPythonhon

AddFunction()

AddFunction adds a customized function.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon RustRust JaJavvaa

updated, err := e.UpdatePolicies([][]string{{"eve", "data3", "read"},

{"jack", "data3", "read"}}, [][]string{{"eve", "data3", "write"},

{"jack", "data3", "write"}})

old_rules = [["eve", "data3", "read"], ["jack", "data3", "read"]]

new_rules = [["eve", "data3", "write"], ["jack", "data3", "write"]]

updated = e.update_policies(old_rules, new_rules)

func CustomFunction(key1 string, key2 string) bool {

if key1 == "/alice_data2/myid/using/res_id" && key2 ==

"/alice_data/:resource" {

return true

} else if key1 == "/alice_data2/myid/using/res_id" && key2 ==

"/alice_data2/:id/using/:resId" {

return true

function customFunction(key1, key2){

if(key1 == "/alice_data2/myid/using/res_id" && key2 ==

"/alice_data/:resource") {

return true

} else if(key1 == "/alice_data2/myid/using/res_id" && key2 ==

"/alice_data2/:id/using/:resId") {

return true

} else {

return false

}

}

e.addFunction("keyMatchCustom", customFunction);

func customFunction($key1, $key2) {

if ($key1 == "/alice_data2/myid/using/res_id" && $key2 ==

"/alice_data/:resource") {

return true;

} elseif ($key1 == "/alice_data2/myid/using/res_id" && $key2 ==

"/alice_data2/:id/using/:resId") {

return true;

} else {

return false;

}

}

func customFunctionWrapper(...$args){

$key1 := $args[0];

$key2 := $args[1];

return customFunction($key1, $key2);

}

$e->addFunction("keyMatchCustom", customFunctionWrapper);

def custom_function(key1, key2):

return ((key1 == "/alice_data2/myid/using/res_id" and key2 ==

"/alice_data/:resource") or (key1 == "/alice_data2/myid/using/res_id"

LoadFilteredPolicy()

LoadFilteredPolicy loads filtered policies from file/database.

For example:

fn custom_function(key1: STring, key2: String) {

key1 == "/alice_data2/myid/using/res_id" && key2 ==

"/alice_data/:resource" || key1 == "/alice_data2/myid/using/res_id" &&

key2 == "/alice_data2/:id/using/:resId"

}

e.add_function("keyMatchCustom", custom_function);

public static class CustomFunc extends CustomFunction {

@Override

public AviatorObject call(Map<String, Object> env, AviatorObject

arg1, AviatorObject arg2) {

String key1 = FunctionUtils.getStringValue(arg1, env);

String key2 = FunctionUtils.getStringValue(arg2, env);

if (key1.equals("/alice_data2/myid/using/res_id") &&

key2.equals("/alice_data/:resource")) {

return AviatorBoolean.valueOf(true);

} else if (key1.equals("/alice_data2/myid/using/res_id") &&

key2.equals("/alice_data2/:id/using/:resId")) {

return AviatorBoolean.valueOf(true);

} else {

return AviatorBoolean.valueOf(false);

}

}

@Override

public String getName() {

return "keyMatchCustom";

}

}

FunctionTest.CustomFunc customFunc = new FunctionTest.CustomFunc();

e.addFunction(customFunc.getName(), customFunc);

GoGo Node.jsNode.js PytPythonhon JaJavvaa

LoadIncrementalFilteredPolicy()

LoadIncrementalFilteredPolicy append a filtered policy from file/database.

For example:

GoGo Node.jsNode.js PytPythonhon

err := e.LoadFilteredPolicy()

const ok = await e.loadFilteredPolicy();

class Filter:

P = []

G = []

adapter =

casbin.persist.adapters.FilteredAdapter("rbac_with_domains_policy.csv")

e = casbin.Enforcer("rbac_with_domains_model.conf", adapter)

filter = Filter()

filter.P = ["", "domain1"]

filter.G = ["", "", "domain1"]

e.load_filtered_policy(filter)

e.loadFilteredPolicy(new String[] { "", "domain1" });

err := e.LoadIncrementalFilteredPolicy()

const ok = await e.loadIncrementalFilteredPolicy();

adapter =

casbin.persist.adapters.FilteredAdapter("rbac_with_domains_policy.csv")

UpdateGroupingPolicy()

UpdateGroupingPolicy updates oldRule to newRulein g section

For example:

GoGo JaJavvaa

UpdateNamedGroupingPolicy()

UpdateNamedGroupingPolicy updates oldRule named ptype to newRulein g section

For example:

GoGo JaJavvaa

SetFieldIndex()

SetFieldIndex suport customization of conventional name and position of sub , obj ,

succeed, err : = e.UpdateGroupingPolicy([]string{"data3_admin",

"data4_admin"}, []string{"admin", "data4_admin"})

boolean succeed = e.updateGroupingPolicy(Arrays.asList("data3_admin",

"data4_admin"), Arrays.asList("admin", "data4_admin"));

succeed, err : = e.UpdateGroupingPolicy("g1",[]string{"data3_admin",

"data4_admin"}, []string{"admin", "data4_admin"})

boolean succeed = e.updateNamedGroupingPolicy("g1",

Arrays.asList("data3_admin", "data4_admin"), Arrays.asList("admin",

"data4_admin"));

domain and priority .

For example:

GoGo

[policy_definition]

p = customized_priority, obj, act, eft, subject

e.SetFieldIndex("p", constant.PriorityIndex, 0)

e.SetFieldIndex("p", constant.SubjectIndex, 4)

RBARBAC APIC API
A more friendly API for RBAC. This API is a subset of Management API. The RBAC

users could use this API to simplify the code.

RRefefererenceence
global variable e is Enforcer instance.

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

e, err := NewEnforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv")

const e = await newEnforcer('examples/rbac_model.conf',

'examples/rbac_policy.csv')

$e = new Enforcer('examples/rbac_model.conf', 'examples/

rbac_policy.csv');

e = casbin.Enforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv")

var e = new Enforcer("path/to/model.conf", "path/to/

policy.csv");

let mut e = Enforcer::new("examples/rbac_model.conf", "examples/

rbac_policy.csv").await?;

GetRolesForUser()

GetRolesForUser gets the roles that a user has.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetUsersForRole()

GetUsersForRole gets the users that has a role.

Enforcer e = new Enforcer("examples/rbac_model.conf", "examples/

rbac_policy.csv");

res := e.GetRolesForUser("alice")

const res = await e.getRolesForUser('alice')

$res = $e->getRolesForUser("alice");

roles = e.get_roles_for_user("alice")

var res = e.GetRolesForUser("alice");

let roles = e.get_roles_for_user("alice", None); // No domain

List<String> res = e.getRolesForUser("alice");

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

HasRoleForUser()

HasRoleForUser determines whether a user has a role.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

res := e.GetUsersForRole("data1_admin")

const res = await e.getUsersForRole('data1_admin')

$res = $e->getUsersForRole("data1_admin");

users = e.get_users_for_role("data1_admin")

var res = e.GetUsersForRole("data1_admin");

let users = e.get_users_for_role("data1_admin", None); // No

domain

List<String> res = e.getUsersForRole("data1_admin");

res := e.HasRoleForUser("alice", "data1_admin")

AddRoleForUser()

AddRoleForUser adds a role for a user. Returns false if the user already has the

role (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

const res = await e.hasRoleForUser('alice', 'data1_admin')

$res = $e->hasRoleForUser("alice", "data1_admin");

has = e.has_role_for_user("alice", "data1_admin")

var res = e.HasRoleForUser("alice", "data1_admin");

let has = e.has_role_for_user("alice", "data1_admin", None); //

No domain

boolean res = e.hasRoleForUser("alice", "data1_admin");

e.AddRoleForUser("alice", "data2_admin")

await e.addRoleForUser('alice', 'data2_admin')

$e->addRoleForUser("alice", "data2_admin");

AddRolesForUser()

AddRolesForUser adds multiple roles for a user. Returns false if the user already

has one of these roles (aka not affected).

For example:

GoGo Node.jsNode.js RustRust

e.add_role_for_user("alice", "data2_admin")

var added = e.AddRoleForUser("alice", "data2_admin");

or

var added = await e.AddRoleForUserAsync("alice", "data2_admin");

let added = e.add_role_for_user("alice", "data2_admin",

None).await?; // No domain

boolean added = e.addRoleForUser("alice", "data2_admin");

var roles = []string{"data2_admin", "data1_admin"}

e.AddRolesForUser("alice", roles)

const roles = ["data1_admin", "data2_admin"];

roles.map((role) => e.addRoleForUser("alice", role));

let roles = vec!["data1_admin".to_owned(),

"data2_admin".to_owned()];

let all_added = e.add_roles_for_user("alice", roles,

DeleteRoleForUser()

DeleteRoleForUser deletes a role for a user. Returns false if the user does not have

the role (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

DeleteRolesForUser()

DeleteRolesForUser deletes all roles for a user. Returns false if the user does not

e.DeleteRoleForUser("alice", "data1_admin")

await e.deleteRoleForUser('alice', 'data1_admin')

$e->deleteRoleForUser("alice", "data1_admin");

e.delete_role_for_user("alice", "data1_admin")

var deleted = e.DeleteRoleForUser("alice", "data1_admin");

or

var deleted = await e.DeleteRoleForUser("alice", "data1_admin");

let deleted = e.delete_role_for_user("alice", "data1_admin",

None).await?; // No domain

boolean deleted = e.deleteRoleForUser("alice", "data1_admin");

have any roles (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

DeleteUser()

DeleteUser deletes a user. Returns false if the user does not exist (aka not

affected).

For example:

e.DeleteRolesForUser("alice")

await e.deleteRolesForUser('alice')

$e->deleteRolesForUser("alice");

e.delete_roles_for_user("alice")

var deletedAtLeastOne = e.DeleteRolesForUser("alice");

or

var deletedAtLeastOne = await

e.DeleteRolesForUserAsync("alice");

let deleted_at_least_one = e.delete_roles_for_user("alice",

None).await?; // No domain

boolean deletedAtLeastOne = e.deleteRolesForUser("alice");

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

DeleteRole()

DeleteRole deletes a role.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

e.DeleteUser("alice")

await e.deleteUser('alice')

$e->deleteUser("alice");

e.delete_user("alice")

var deleted = e.DeleteUser("alice");

or

var deleted = await e.DeleteUserAsync("alice");

let deleted = e.delete_user("alice").await?;

boolean deleted = e.deleteUser("alice");

e.DeleteRole("data2_admin")

DeletePermission()

DeletePermission deletes a permission. Returns false if the permission does not

exist (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

await e.deleteRole("data2_admin")

$e->deleteRole("data2_admin");

e.delete_role("data2_admin")

var deleted = e.DeleteRole("data2_admin");

or

var deleted = await e.DeleteRoleAsync("data2_admin");

let deleted = e.delete_role("data2_admin").await?;

e.deleteRole("data2_admin");

e.DeletePermission("read")

await e.deletePermission('read')

$e->deletePermission("read");

AddPermissionForUser()

AddPermissionForUser adds a permission for a user or role. Returns false if the

user or role already has the permission (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

e.delete_permission("read")

var deleted = e.DeletePermission("read");

or

var deleted = await e.DeletePermissionAsync("read");

let deleted =

e.delete_permission(vec!["read".to_owned()]).await?;

boolean deleted = e.deletePermission("read");

e.AddPermissionForUser("bob", "read")

await e.addPermissionForUser('bob', 'read')

$e->addPermissionForUser("bob", "read");

e.add_permission_for_user("bob", "read")

AddPermissionsForUser()

AddPermissionsForUser adds multiple permissions for a user or role. Returns false

if the user or role already has one of the permissions (aka not affected).

For example:

GoGo Node.jsNode.js RustRust

var added = e.AddPermissionForUser("bob", "read");

or

var added = await e.AddPermissionForUserAsync("bob", "read");

let added = e.add_permission_for_user("bob",

vec!["read".to_owned()]).await?;

boolean added = e.addPermissionForUser("bob", "read");

var permissions = [][]string{{"data1",

"read"},{"data2","write"}}

for i := 0; i < len(permissions); i++ {

e.AddPermissionsForUser("alice", permissions[i])

}

const permissions = [

["data1", "read"],

["data2", "write"],

];

permissions.map((permission) => e.addPermissionForUser("bob",

DeletePermissionForUser()

DeletePermissionForUser deletes a permission for a user or role. Returns false if

the user or role does not have the permission (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

let permissions = vec![

vec!["data1".to_owned(), "read".to_owned()],

vec!["data2".to_owned(), "write".to_owned()],

];

let all_added = e.add_permissions_for_user("bob",

permissions).await?;

e.DeletePermissionForUser("bob", "read")

await e.deletePermissionForUser("bob", "read")

$e->deletePermissionForUser("bob", "read");

e.delete_permission_for_user("bob", "read")

var deleted = e.DeletePermissionForUser("bob", "read");

or

var deleted = await e.DeletePermissionForUserAsync("bob",

"read");

DeletePermissionsForUser()

DeletePermissionsForUser deletes permissions for a user or role. Returns false if

the user or role does not have any permissions (aka not affected).

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

let deleted = e.delete_permission_for_user("bob",

vec!["read".to_owned()]).await?;

boolean deleted = e.deletePermissionForUser("bob", "read");

e.DeletePermissionsForUser("bob")

await e.deletePermissionsForUser('bob')

$e->deletePermissionsForUser("bob");

e.delete_permissions_for_user("bob")

var deletedAtLeastOne = e.DeletePermissionsForUser("bob");

or

var deletedAtLeastOne = await

e.DeletePermissionsForUserAsync("bob");

let deleted_at_least_one =

e.delete_permissions_for_user("bob").await?;

GetPermissionsForUser()

GetPermissionsForUser gets permissions for a user or role.

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET JaJavvaa

HasPermissionForUser()

HasPermissionForUser determines whether a user has a permission.

For example:

boolean deletedAtLeastOne = e.deletePermissionForUser("bob");

e.GetPermissionsForUser("bob")

await e.getPermissionsForUser('bob')

$e->getPermissionsForUser("bob");

e.get_permissions_for_user("bob")

var permissions = e.GetPermissionsForUser("bob");

List<List<String>> permissions = e.getPermissionsForUser("bob");

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetImplicitRolesForUser()

GetImplicitRolesForUser gets implicit roles that a user has. Compared to

GetRolesForUser(), this function retrieves indirect roles besides direct roles.

For example:

GetRolesForUser("alice") can only get: ["role:admin"].

But GetImplicitRolesForUser("alice") will get: ["role:admin", "role:user"].

e.HasPermissionForUser("alice", []string{"read"})

await e.hasPermissionForUser('alice', 'read')

$e->hasPermissionForUser("alice", []string{"read"});

has = e.has_permission_for_user("alice", "read")

var has = e.HasPermissionForUser("bob", "read");

let has = e.has_permission_for_user("alice",

vec!["data1".to_owned(), "read".to_owned()]);

boolean has = e.hasPermissionForUser("alice", "read");

g, alice, role:admin

g, role:admin, role:user

For example:

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetImplicitUsersForRole()

GetImplicitUsersForRole gets all users inheriting the role. Compared to

GetUsersForRole(), this function retrieves indirect users.

For example:

GetUsersForRole("role:user") can only get: ["role:admin"].

e.GetImplicitRolesForUser("alice")

await e.getImplicitRolesForUser("alice")

$e->getImplicitRolesForUser("alice");

e.get_implicit_roles_for_user("alice")

var implicitRoles = e.GetImplicitRolesForUser("alice");

e.get_implicit_roles_for_user("alice", None); // No domain

List<String> implicitRoles = e.getImplicitRolesForUser("alice");

g, alice, role:admin

g, role:admin, role:user

But GetImplicitUesrsForRole("role:user") will get: ["role:admin", "alice"].

For example:

GoGo Node.jsNode.js JaJavvaa

GetImplicitPermissionsForUser()

GetImplicitPermissionsForUser gets implicit permissions for a user or role.

Compared to GetPermissionsForUser(), this function retrieves permissions for

inherited roles.

For example:

GetPermissionsForUser("alice") can only get: [["alice", "data2", "read"]].

But GetImplicitPermissionsForUser("alice") will get: [["admin", "data1", "read"],

["alice", "data2", "read"]].

For example:

users := e.GetImplicitUsersForRole("role:user")

const users = e.getImplicitUsersForRole("role:user");

List<String> users = e.getImplicitUsersForRole("role:user");

p, admin, data1, read

p, alice, data2, read

g, alice, admin

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

GetNamedImplicitPermissionsForUser()

GetNamedImplicitPermissionsForUser gets implicit permissions for a user or role

by named policy Compared to GetImplicitPermissionsForUser(), this function allow

you to specify the policy name.

For example:

e.GetImplicitPermissionsForUser("alice")

await e.getImplicitPermissionsForUser("alice")

$e->getImplicitPermissionsForUser("alice");

e.get_implicit_permissions_for_user("alice")

var implicitPermissions =

e.GetImplicitPermissionsForUser("alice");

e.get_implicit_permissions_for_user("alice", None); // No domain

List<List<String>> implicitPermissions =

e.getImplicitPermissionsForUser("alice");

p, admin, data1, read

p2, admin, create

g, alice, admin

GetImplicitPermissionsForUser("alice") only get: [["admin", "data1", "read"]], whose

policy is default "p"

But you can specify the policy as "p2" to get: [["admin", "create"]] by

GetNamedImplicitPermissionsForUser("p2","alice")

For example:

GoGo PytPythonhon

GetDomainsForUser()

GetDomainsForUser gets all domains which a user has.

For example:

GetDomainsForUser("alice") could get ["domain1", "domain2"]

For example:

e.GetNamedImplicitPermissionsForUser("p2","alice")

e.get_named_implicit_permissions_for_user("p2", "alice")

p, admin, domain1, data1, read

p, admin, domain2, data2, read

p, admin, domain2, data2, write

g, alice, admin, domain1

g, alice, admin, domain2

GoGo

GetImplicitResourcesForUser()

GetImplicitResourcesForUser returns all policies that should be true for user.

For example:

GetImplicitResourcesForUser("alice") will return [[alice data1 read] [alice

data2 read] [alice data2 write]]

GoGo

GetImplicitUsersForPermission()

GetImplicitUsersForPermission gets implicit users for a permission.

result, err := e.GetDomainsForUser("alice")

p, alice, data1, read

p, bob, data2, write

p, data2_admin, data2, read

p, data2_admin, data2, write

g, alice, data2_admin

resources, err := e.GetImplicitResourcesForUser("alice")

For example:

GetImplicitUsersForPermission("data1", "read") will return: ["alice", "bob"] .

Note: only users will be returned, roles (2nd arg in "g") will be excluded.

GoGo

GetAllowedObjectConditions()

GetAllowedObjectConditions returns a string array of object conditions that the

user can access.

For example:

e.GetAllowedObjectConditions("alice", "read", "r.obj.") will return ["price < 25",

"category_id = 2"], nil

p, admin, data1, read

p, bob, data1, read

g, alice, admin

users, err := e.GetImplicitUsersForPermission("data1", "read")

p, alice, r.obj.price < 25, read

p, admin, r.obj.category_id = 2, read

p, bob, r.obj.author = bob, write

g, alice, admin

Note:

0. prefix: You can customize the prefix of the object conditions, and "r.obj." is

commonly used as a prefix. After removing the prefix, the remaining part is

the condition of the object. If there is an obj policy that does not meet the

prefix requirement, an errors.ERR_OBJ_CONDITION will be returned.

1. If the 'objectConditions' array is empty, return

errors.ERR_EMPTY_CONDITION This error is returned because some data

adapters' ORM return full table data by default when they receive an empty

condition, which tends to behave contrary to expectations.(e.g. GORM) If you

are using an adapter that does not behave like this, you can choose to ignore

this error.

GoGo

GetImplicitUsersForResource()

GetImplicitUsersForResource return implicit user based on resource.

For example:

GetImplicitUsersForResource("data2") will return [["bob", "data2", "write"],

conditions, err := e.GetAllowedObjectConditions("alice",

"read", "r.obj.")

p, alice, data1, read

p, bob, data2, write

p, data2_admin, data2, read

p, data2_admin, data2, write

g, alice, data2_admin

["alice", "data2", "read"] ["alice", "data2", "write"]], nil .

GetImplicitUsersForResource("data1") will return [["alice", "data1",

"read"]], nil .

GoGo

NONOTETE

Only users will be returned, roles (2nd arg in "g") will be excluded.

ImplicitUsers, err := e.GetImplicitUsersForResource("data2")

RBARBAC witC with Domains APIh Domains API
A more user-friendly API for RBAC with domains. This API is a subset of the

Management API. RBAC users can use this API to simplify their code.

RRefefererenceence
The global variable e represents the Enforcer instance.

GoGo Node.jsNode.js PHPPHP PytPythonhon .NET.NET RustRust JaJavvaa

e, err := NewEnforcer("examples/rbac_with_domains_model.conf",

"examples/rbac_with_domains_policy.csv")

const e = await newEnforcer('examples/

rbac_with_domains_model.conf', 'examples/

rbac_with_domains_policy.csv')

$e = new Enforcer('examples/rbac_with_domains_model.conf',

'examples/rbac_with_domains_policy.csv');

e = casbin.Enforcer("examples/rbac_with_domains_model.conf",

"examples/rbac_with_domains_policy.csv")

var e = new Enforcer("examples/rbac_with_domains_model.conf",

"examples/rbac_with_domains_policy.csv");

let mut e = Enforcer::new("examples/

rbac_with_domains_model.conf", "examples/

GetUsersForRoleInDomain()

The GetUsersForRoleInDomain() function retrieves the users that have a role

within a domain.

For example:

GoGo Node.jsNode.js PytPythonhon

GetRolesForUserInDomain()

The GetRolesForUserInDomain() function retrieves the roles that a user has

within a domain.

For example:

GoGo Node.jsNode.js PytPythonhon JaJavvaa

Enforcer e = new Enforcer("examples/

rbac_with_domains_model.conf", "examples/

rbac_with_domains_policy.csv");

res := e.GetUsersForRoleInDomain("admin", "domain1")

const res = e.getUsersForRoleInDomain("admin", "domain1")

res = e.get_users_for_role_in_domain("admin", "domain1")

GetPermissionsForUserInDomain()

The GetPermissionsForUserInDomain() function retrieves the permissions for a

user or role within a domain.

For example:

GoGo JaJavvaa

AddRoleForUserInDomain()

The AddRoleForUserInDomain() function adds a role for a user within a domain.

It returns false if the user already has the role (no changes made).

res := e.GetRolesForUserInDomain("admin", "domain1")

const res = e.getRolesForUserInDomain("alice", "domain1")

res = e.get_roles_for_user_in_domain("alice", "domain1")

List<String> res = e.getRolesForUserInDomain("admin",

"domain1");

res := e.GetPermissionsForUserInDomain("alice", "domain1")

List<List<String>> res =

e.getPermissionsForUserInDomain("alice", "domain1");

For example:

GoGo PytPythonhon JaJavvaa

DeleteRoleForUserInDomain()

The DeleteRoleForUserInDomain() function removes a role for a user within a

domain. It returns false if the user does not have the role (no changes made).

For example:

GoGo JaJavvaa

ok, err := e.AddRoleForUserInDomain("alice", "admin", "domain1")

ok = e.add_role_for_user_in_domain("alice", "admin", "domain1")

boolean ok = e.addRoleForUserInDomain("alice", "admin",

"domain1");

ok, err := e.DeleteRoleForUserInDomain("alice", "admin",

"domain1")

boolean ok = e.deleteRoleForUserInDomain("alice", "admin",

"domain1");

DeleteRolesForUserInDomain()

The DeleteRolesForUserInDomain() function removes all roles for a user within

a domain. It returns false if the user does not have any roles (no changes made).

For example:

GoGo

GetAllUsersByDomain()

The GetAllUsersByDomain() function retrieves all users associated with the

given domain. It returns an empty string array if no domain is defined in the model.

For example:

GoGo

DeleteAllUsersByDomain()

The DeleteAllUsersByDomain() function deletes all users associated with the

given domain. It returns false if no domain is defined in the model.

ok, err := e.DeleteRolesForUserInDomain("alice", "domain1")

res := e.GetAllUsersByDomain("domain1")

For example:

GoGo

DeleteDomains()

DeleteDomains would delete all associated users and roles. It would delete all

domains if parameter is not provided.

For example:

GoGo

GetAllDomains()

GetAllDomains would get all domains.

For example:

GoGo

ok, err := e.DeleteAllUsersByDomain("domain1")

ok, err := e.DeleteDomains("domain1", "domain2")

res, _ := e.GetAllDomains()

NONOTETE

If you are handling a domain like name::domain , it may lead to unexpected

behavior. In Casbin, :: is a reserved keyword, just like for , if in a

programming language, we should never put :: in a domain.

GetAllRolesByDomain()

GetAllRolesByDomain would get all roles associated with the domain.

For example:

GoGo

NONOTETE

This method does not apply to domains that have an inheritance

relationship, also known as implicit roles.

GetImplicitUsersForResourceByDomain()

GetImplicitUsersForResourceByDomain return implicit user based on resource and

domain.

For example:

res := e.GetAllRolesByDomain("domain1")

p, admin, domain1, data1, read

GetImplicitUsersForResourceByDomain("data1", "domain1") will return [["alice",

"domain1", "data1", "read"],["alice", "domain1", "data1", "write"]],

nil

GoGo

NONOTETE

Only users will be returned, roles (2nd arg in "g") will be excluded.

ImplicitUsers, err :=

e.GetImplicitUsersForResourceByDomain("data1", "domain1")

RBARBAC witC with Conditions APIh Conditions API
A more user-friendly API for RBAC with conditions.

RRefefererenceence

AddNamedLinkConditionFAddNamedLinkConditionFuncunc

AddNamedLinkConditionFunc Add condition function fn for Link userName-

>roleName , when fn returns true, Link is valid, otherwise invalid

GoGo

AddNamedDomainLinkConditionFAddNamedDomainLinkConditionFuncunc

AddNamedDomainLinkConditionFunc Add condition function fn for Link

userName-> {roleName, domain} , when fn returns true, Link is valid, otherwise

invalid

GoGo

e.AddNamedLinkConditionFunc("g", "userName", "roleName",

YourLinkConditionFunc)

e.AddNamedDomainLinkConditionFunc("g", "userName", "roleName",

"domainName", YourLinkConditionFunc)

SetSetNamedLinkConditionFNamedLinkConditionFuncParamsuncParams

SetNamedLinkConditionFuncParams Sets the parameters of the condition

function fn for Link userName->roleName

GoGo

SetSetNamedDomainLinkConditionFNamedDomainLinkConditionFuncParamsuncParams

SetNamedDomainLinkConditionFuncParams Sets the parameters of the

condition function fn for Link userName->{roleName, domain}

GoGo

e.SetNamedLinkConditionFuncParams("g", "userName", "roleName",

"YourConditionFuncParam")

e.SetNamedLinkConditionFuncParams("g", "userName2",

"roleName2", "YourConditionFuncParam_1",

"YourConditionFuncParam_2")

e.SetNamedDomainLinkConditionFuncParams("g", "userName",

"roleName", "domainName", "YourConditionFuncParam")

e.SetNamedDomainLinkConditionFuncParams("g", "userName2",

"roleName2", "domainName2", "YourConditionFuncParam_1",

"YourConditionFuncParam_2")

RRoleManager APIoleManager API
RRoleManageroleManager
The RoleManager provides an interface for defining operations to manage roles.

The addition of a matching function to the RoleManager allows the use of

wildcards in role names and domains.

AddNamedMatchingFunc()

The AddNamedMatchingFunc function adds a MatchingFunc by Ptype to the

RoleManager. The MatchingFunc will be used when performing role matching.

GoGo Node.jsNode.js

For example:

GoGo Node.jsNode.js

e.AddNamedMatchingFunc("g", "", util.KeyMatch)

_, _ = e.AddGroupingPolicies([][]string{{"*", "admin",

"domain1"}})

_, _ = e.GetRoleManager().HasLink("bob", "admin",

"domain1") // -> true, nil

await e.addNamedMatchingFunc('g', Util.keyMatchFunc);

await e.addGroupingPolicies([['*', 'admin', 'domain1']]);

await e.getRoleManager().hasLink('bob', 'admin', 'domain1');

AddNamedDomainMatchingFunc()

The AddNamedDomainMatchingFunc function adds a MatchingFunc by Ptype to

the RoleManager. The DomainMatchingFunc is similar to the MatchingFunc

listed above.

For example:

GoGo Node.jsNode.js

GetRoleManager()

The GetRoleManager function gets the current role manager for g .

e, _ := casbin.NewEnforcer("path/to/model", "path/to/

policy")

e.AddNamedMatchingFunc("g", "", util.MatchKey)

const e = await newEnforcer('path/to/model', 'path/to/

policy');

await e.addNamedMatchingFunc('g', Util.keyMatchFunc);

e, _ := casbin.NewEnforcer("path/to/model", "path/to/

policy")

e.AddNamedDomainMatchingFunc("g", "", util.MatchKey)

const e = await newEnforcer('path/to/model', 'path/to/

policy');

await e.addNamedDomainMatchingFunc('g', Util.keyMatchFunc);

For example:

GoGo Node.jsNode.js PytPythonhon

GetNamedRoleManager()

The GetNamedRoleManager function gets the role manager by named Ptype.

For example:

GoGo Node.jsNode.js PytPythonhon

SetRoleManager()

The SetRoleManager function sets the current role manager for g .

rm := e.GetRoleManager()

const rm = await e.getRoleManager();

rm = e.get_role_manager()

rm := e.GetNamedRoleManager("g2")

const rm = await e.getNamedRoleManager("g2");

rm = e.get_named_role_manager("g2")

For example:

GoGo Node.jsNode.js PytPythonhon

SetNamedRoleManager()

The SetNamedRoleManager function sets the role manager by named Ptype.

For example:

GoGo PytPythonhon

Clear()

The Clear function clears all stored data and resets the role manager to its initial

state.

For example:

e.SetRoleManager(rm)

e.setRoleManager(rm);

rm = e.set_role_manager(rm)

rm := e.SetNamedRoleManager("g2", rm)

rm = e.set_role_manager("g2", rm)

GoGo Node.jsNode.js PytPythonhon

AddLink()

AddLink adds the inheritance link between two roles. role: name1 and role: name2.

Domain is a prefix to the roles (can be used for other purposes).

For example:

GoGo Node.jsNode.js PytPythonhon

DeleteLink()

DeleteLink deletes the inheritance link between two roles. role: name1 and role:

name2. Domain is a prefix to the roles (can be used for other purposes).

rm.Clear()

await rm.clear();

rm.clear()

rm.AddLink("u1", "g1", "domain1")

await rm.addLink('u1', 'g1', 'domain1');

rm.add_link("u1", "g1", "domain1")

For example:

GoGo Node.jsNode.js PytPythonhon

HasLink()

HasLink determines whether a link exists between two roles. role: name1 inherits

role: name2. Domain is a prefix to the roles (can be used for other purposes).

For example:

GoGo Node.jsNode.js PytPythonhon

GetRoles()

GetRoles gets the roles that a user inherits. Domain is a prefix to the roles (can be

rm.DeleteLink("u1", "g1", "domain1")

await rm.deleteLink('u1', 'g1', 'domain1');

rm.delete_link("u1", "g1", "domain1")

rm.HasLink("u1", "g1", "domain1")

await rm.hasLink('u1', 'g1', 'domain1');

rm.has_link("u1", "g1", "domain1")

used for other purposes).

For example:

GoGo Node.jsNode.js PytPythonhon

GetUsers()

GetUsers gets the users that inherits a role. Domain is a prefix to the users (can

be used for other purposes).

For example:

GoGo Node.jsNode.js PytPythonhon

rm.GetRoles("u1", "domain1")

await rm.getRoles('u1', 'domain1');

rm.get_roles("u1", "domain")

rm.GetUsers("g1")

await rm.getUsers('g1');

rm.get_users("g1")

PrintRoles()

PrintRoles prints all the roles to log.

For example:

GoGo Node.jsNode.js PytPythonhon

SetLogger()

SetLogger sets role manager's logger.

For example:

GoGo

rm.PrintRoles()

await rm.printRoles();

rm.print_roles()

logger := log.DefaultLogger{}

logger.EnableLog(true)

rm.SetLogger(&logger)

_ = rm.PrintRoles()

GetDomains()

GetDomains gets domains that a user has

For example:

GoGo

result, err := rm.GetDomains(name)

AdvAdvanced usageanced usage

📄📄 Multi-t Multi-thrhreadingeading

Utilizing Casbin in a multi-threading environment

📄📄 Benchmarks Benchmarks

Overhead of Policy Enforcement in Casbin

📄📄 P Pererfformance Optimizationormance Optimization

Casbin performance optimization

📄📄 Aut Authorization of Khorization of Kubernetuberneteses

Kubernetes (k8s) RBAC & ABAC authorization middleware based on Casbin

📄📄 Admission W Admission Webhook febhook for K8sor K8s

Kubernetes (K8s) RBAC & ABAC Authorization Middleware based on Casbin

📄📄 Aut Authorization of Serhorization of Service Mesh tvice Mesh thrhrough Enough Envvooyy

Authorization of Service Mesh through Envoy

Multi-tMulti-thrhreadingeading
When using Casbin in a multi-threading environment, you can employ the

synchronized wrapper of the Casbin enforcer: https://github.com/casbin/casbin/

blob/master/enforcer_synced.go (GoLang) and https://github.com/casbin/casbin-

cpp/blob/master/casbin/enforcer_synced.cpp (C++).

Furthermore, it also provides support for the "AutoLoad" feature, allowing the

Casbin enforcer to automatically load the latest policy rules from the database if

any changes occur. To initiate the automatic loading of policies periodically, call

the "StartAutoLoadPolicy()" function. Likewise, to stop this automatic loading, call

the "StopAutoLoadPolicy()" function.

https://github.com/casbin/casbin/blob/master/enforcer_synced.go
https://github.com/casbin/casbin/blob/master/enforcer_synced.go
https://github.com/casbin/casbin-cpp/blob/master/casbin/enforcer_synced.cpp
https://github.com/casbin/casbin-cpp/blob/master/casbin/enforcer_synced.cpp

BenchmarksBenchmarks

GoGo PytPythonhon C++C++ Lua (JIT)Lua (JIT)

The overhead of policy enforcement has been benchmarked in model_b_test.go. The testbed configuration is as follows:

Following are the benchmarking results obtained by running go test -bench=. -benchmem (op = an Enforce() call, ms =

millisecond, KB = kilobytes):

TTest caseest case Rule sizRule sizee Time oTime ovverhead (ms/operhead (ms/op)) MemorMemory oy ovverhead (KB)erhead (KB)

ACL 2 rules (2 users) 0.015493 5.649

RBAC 5 rules (2 users, 1 role) 0.021738 7.522

RBAC (small) 1100 rules (1000 users, 100 roles) 0.164309 80.620

RBAC (medium) 11000 rules (10000 users, 1000 roles) 2.258262 765.152

RBAC (large) 110000 rules (100000 users, 10000 roles) 23.916776 7,606

RBAC with resource roles 6 rules (2 users, 2 roles) 0.021146 7.906

RBAC with domains/tenants 6 rules (2 users, 1 role, 2 domains) 0.032696 10.755

ABAC 0 rule (0 user) 0.007510 2.328

RESTful 5 rules (3 users) 0.045398 91.774

Deny-override 6 rules (2 users, 1 role) 0.023281 8.370

Priority 9 rules (2 users, 2 roles) 0.016389 5.313

The overhead of policy enforcement in Pycasbin has been benchmarked in the tests/benchmarks directory. The testbed

configuration is as follows:

Here are the benchmarking results obtained from executing casbin_benchmark (op = an enforce() call, ms = millisecond):

TTest caseest case Rule sizRule sizee Time oTime ovverhead (ms/operhead (ms/op))

ACL 2 rules (2 users) 0.067691

RBAC 5 rules (2 users, 1 role) 0.080045

Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 2601 Mhz, 4 Core(s), 8 Logical Processor(s)

Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz (Runned by Github actions)

platform linux -- Python 3.11.4, pytest-7.0.1, pluggy-1.2.0

https://github.com/casbin/casbin/blob/master/model_b_test.go
https://github.com/casbin/pycasbin
https://github.com/casbin/pycasbin/tree/master/tests/benchmarks
https://github.com/casbin/pycasbin/tree/master/tests/benchmarks

TTest caseest case Rule sizRule sizee Time oTime ovverhead (ms/operhead (ms/op))

RBAC (small) 1100 rules (1000 users, 100 roles) 0.853590

RBAC (medium) 11000 rules (10000 users, 1000 roles) 6.986668

RBAC (large) 110000 rules (100000 users, 10000 roles) 77.922851

RBAC with resource roles 6 rules (2 users, 2 roles) 0.106090

RBAC with domains/tenants 6 rules (2 users, 1 role, 2 domains) 0.103628

ABAC 0 rule (0 user) 0.053213

RESTful 5 rules (3 users) NA

Deny-override 6 rules (2 users, 1 role) NA

Priority 9 rules (2 users, 2 roles) 0.084684

The overhead of policy enforcement in Casbin CPP has been benchmarked in the tests/benchmarks directory using Google's

benchmarking tool. The testbed configuration is as follows:

Here are the benchmarking results obtained from executing the casbin_benchmark target built in the Release configuration (op =

an enforce() call, ms = millisecond):

TTest caseest case Rule sizRule sizee Time oTime ovverhead (ms/operhead (ms/op))

ACL 2 rules (2 users) 0.0195

RBAC 5 rules (2 users, 1 role) 0.0288

RBAC (small) 1100 rules (1000 users, 100 roles) 0.300

RBAC (medium) 11000 rules (10000 users, 1000 roles) 2.113

RBAC (large) 110000 rules (100000 users, 10000 roles) 21.450

RBAC with resource roles 6 rules (2 users, 2 roles) 0.03

RBAC with domains/tenants 6 rules (2 users, 1 role, 2 domains) 0.041

ABAC 0 rule (0 user) NA

RESTful 5 rules (3 users) NA

Deny-override 6 rules (2 users, 1 role) 0.0246

Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz, 4 cores, 4 threads

https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-cpp/tree/master/tests/benchmarks
https://github.com/casbin/casbin-cpp/tree/master/tests/benchmarks
https://github.com/google/benchmark
https://github.com/google/benchmark

TTest caseest case Rule sizRule sizee Time oTime ovverhead (ms/operhead (ms/op))

Priority 9 rules (2 users, 2 roles) 0.035

The overhead of policy enforcement in Lua Casbin has been benchmarked in bench.lua. The testbed configuration is as follows:

Here are the benchmarking results obtained by running luajit bench.lua (op = an enforce() call, ms = millisecond):

TTest caseest case Rule sizRule sizee Time oTime ovverhead (ms/operhead (ms/op))

ACL 2 rules (2 users) 0.0533

RBAC 5 rules (2 users, 1 role) 0.0972

RBAC (small) 1100 rules (1000 users, 100 roles) 0.8598

RBAC (medium) 11000 rules (10000 users, 1000 roles) 8.6848

RBAC (large) 110000 rules (100000 users, 10000 roles) 90.3217

RBAC with resource roles 6 rules (2 users, 2 roles) 0.1124

RBAC with domains/tenants 6 rules (2 users, 1 role, 2 domains) 0.1978

ABAC 0 rule (0 user) 0.0305

RESTful 5 rules (3 users) 0.1085

Deny-override 6 rules (2 users, 1 role) 0.1934

Priority 9 rules (2 users, 2 roles) 0.1437

Benchmark monitBenchmark monitoringoring
In the embedded web page below, you can see the performance changes of Casbin for each commit.

You can also directly browse it at: https://v1.casbin.org/casbin/benchmark-monitoring

AMD Ryzen(TM) 5 4600H CPU @ 3.0GHz, 6 Cores, 12 Threads

https://github.com/casbin/lua-casbin
https://github.com/casbin/lua-casbin/blob/master/bench.lua
https://v1.casbin.org/casbin/benchmark-monitoring

Last Update:
Repository:

Download data as JSON Powered by github-action-benchmark

https://github.com/marketplace/actions/continuous-benchmark

PPererfformance Optimizationormance Optimization
When applied in a production environment with millions of users or permissions,

you may encounter a performance downgrade in Casbin enforcement. There are

usually two causes:

High VHigh Volume Tolume Trafficraffic

The number of incoming requests per second is too large, for example, 10,000

requests/s for a single Casbin instance. In such cases, a single Casbin instance is

usually not enough to handle all the requests. There are two possible solutions:

1. Use multi-threading to enable multiple Casbin instances, so you can fully

utilize all the cores in the machine. For more details, see: Multi-threading.

2. Deploy Casbin instances to a cluster (multiple machines) and use Watcher to

ensure all Casbin instances are consistent. For more details, see: Watchers.

NONOTETE

You can use both of the above methods at the same time, for example,

deploy Casbin to a 10-machine cluster where each machine has 5 threads

simultaneously serving Casbin enforcement requests.

High Number of PHigh Number of Policy Rulesolicy Rules

In a cloud or multi-tenant environment, millions of policy rules may be required.

Each enforcement call or even loading the policy rules at the initial time can be

very slow. Such cases can usually be mitigated in several ways:

1. Check if your Casbin model or policy is well-designed. A well-written model

and policy abstracts out the duplicated logic for each user/tenant and reduces

the number of rules to a very small level (< 100). For example, you can share

some default rules across all tenants and allow users to customize their rules

later. Customized rules can override the default rules. If you have any further

questions, please open a GitHub issue on the Casbin repository.

2. Do sharding to let a Casbin enforcer only load a small set of policy rules. For

example, enforcer_0 can serve tenant_0 to tenant_99, while enforcer_1 can

serve tenant_100 to tenant_199. To load only a subset of all policy rules, see:

Policy Subset Loading.

3. Grant permissions to RBAC roles instead of users directly. Casbin's RBAC is

implemented by a role inheritance tree (as a cache). So, given a user like

Alice, Casbin only takes O(1) time to query the RBAC tree for the role-user

relationship and perform enforcement. If your g rules don't change often, then

the RBAC tree won't need to be constantly updated. See the details of this

discussion here: https://github.com/casbin/casbin/issues/

681#issuecomment-763801583

NONOTETE

You can try all of the above methods at the same time.

https://github.com/casbin/casbin/issues/681#issuecomment-763801583
https://github.com/casbin/casbin/issues/681#issuecomment-763801583

AutAuthorization ofhorization of
KKubernetuberneteses
K8s-authz is a Kubernetes (k8s) authorization middleware based on Casbin that

utilizes RBAC (Role-Based Access Control) and ABAC (Attribute-Based Access

Control) for policy enforcement. This middleware integrates with the K8s

validation admission webhook to validate the policies defined by Casbin for each

request made to K8s resources. Custom admission controllers are registered with

Kubernetes using the ValidatingAdmissionWebhook to perform validations on

request objects forwarded by the API server and provide a response indicating

whether the request should be allowed or rejected.

To determine when to send incoming requests to the admission controller, a

validation webhook has been implemented. This webhook proxies requests for any

type of K8s resource or sub-resource and performs policy verification. Users are

only allowed to perform operations on these resources if they are authorized by

the Casbin enforcer. The enforcer checks the roles of the user as defined in the

policies. The K8s cluster is the deployment target for this middleware.

RRequirequirementementss
Before proceeding, ensure that you have the following:

• A running Kubernetes cluster. You can set up a local cluster using Docker or

set up a complete Kubernetes ecosystem on your server. For detailed

instructions, refer to this guide for setting up a local Kubernetes cluster on

Windows or this guide for setting up a cluster on Linux.

• Kubectl CLI. Instructions for installing Kubectl on Windows can be found here,

https://github.com/casbin/k8s-authz
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://www.digitalocean.com/community/tutorials/how-to-create-a-kubernetes-cluster-using-kubeadm-on-ubuntu-18-04
https://kubernetes.io/docs/tasks/tools/install-kubectl-windows/

and for Linux here.

• OpenSSL

UsageUsage
Follow these steps to use K8s-authz:

1. Generate certificates and keys for each user using OpenSSL. Run the script

below:

2. Build the Docker image from the Dockerfile manually by running the following

command. Remember to change the build version in the command and in the

deployment file accordingly.

3. Define the Casbin policies in the model.conf and policy.csv files. For more

information on how these policies work, refer to the documentation.

4. Before deploying, you can modify the ports in the main.go file, as well as in

the validation webhook configuration file, based on your specific

requirements.

5. Deploy the validation controller and the webhook on the Kubernetes cluster

by running the following command:

./gen_cert.sh

docker build -t casbin/k8s_authz:0.1 .

kubectl apply -f deployment.yaml

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/casbin/k8s-authz/blob/master/Dockerfile
https://github.com/casbin/k8s-authz/blob/718f58c46e3dbf79063b5b1c18348c2fee5de9e9/manifests/deployment.yaml#L18
https://github.com/casbin/k8s-authz/blob/master/config/model.conf
https://github.com/casbin/k8s-authz/blob/master/config/policy.csv
https://github.com/casbin/k8s-authz/blob/master/main.go
https://github.com/casbin/k8s-authz/blob/master/manifests/deployment.yaml

6. For a production server, it is recommended to create a Kubernetes secret to

secure the certificates:

7. After completing the above steps, you need to update the certificate directory

in main.go and the manifests with the directory of the created secret .

Now, the server should be up and running, ready to validate requests made to K8s

resources and enforce policies accordingly.

kubectl create secret generic casbin -n default \

--from-file=key.pem=certs/casbin-key.pem \

--from-file=cert.pem=certs/casbin-crt.pem

https://github.com/ashish493/k8s-authz/blob/3560551427c0431a9d4594ad1206f084ede37c49/main.go#L26
https://github.com/ashish493/k8s-authz/blob/3560551427c0431a9d4594ad1206f084ede37c49/manifests/deployment.yaml#L22

Admission WAdmission Webhook febhook for K8sor K8s
11. Ov. Overerview & Documentview & Documents fs for Casbin K8s-Gator Casbin K8s-Gatekekeepereeper
Casbin K8s-GateKeeper is a Kubernetes admission webhook that integrates Casbin as the Access Control tool. By

using Casbin K8s-GateKeeper, you can establish flexible rules to authorize or intercept any operation on K8s

resources, WITHOUT writing any piece of code, but only several lines of declarative configurations of Casbin

models and policies, which are part of the Casbin ACL (Access Control List) language.

Casbin K8s-GateKeeper is developed and maintained by the Casbin community. The repository of this project is

available here: https://github.com/casbin/k8s-gatekeeper

00..1 A Simple Example1 A Simple Example

For example, you don't need to write any code, but use the following lines of configuration to achieve this

function: "Forbid images with some specified tags to be used in any deployments":

Model:

And Policy:

These are in ordinary Casbin ACL language. Suppose you have already read chapters about them, it will be very

easy to understand.

Casbin K8s-Gatekeeper has the following advantages:

• Easy to use. Writing several lines of ACL is far better than writing lots of code.

[request_definition]

r = obj

[policy_definition]

p = obj,eft

[policy_effect]

e = !some(where (p.eft == deny))

[matchers]

m = r.obj.Request.Namespace == "default" && r.obj.Request.Resource.Resource

=="deployments" && \

contain(split(accessWithWildcard(${OBJECT}.Spec.Template.Spec.Containers , "*",

"Image"),":",1) , p.obj)

p, "1.14.1",deny

https://github.com/casbin/k8s-gatekeeper

• It allows hot updates of configurations. You don't need to shut down the whole plugin to modify

configurations.

• It is flexible. Arbitrary rules can be made on any K8s resource, which can be explored with kubectl

gatekeeper .

• It simplifies the implementation of K8s admission webhook, which is very complicated. You don't need to

know what K8s admission webhook is or how to write code for it. All you need to do is to know the resource

on which you want to put constraints and then write Casbin ACL. Everyone knows that K8s is complex, but by

using Casbin K8s-Gatekeeper, your time can be saved.

• It is maintained by the Casbin community. Feel free to contact us if anything about this plugin confuses you or

if you encounter any problems when trying this.

11..1 Ho1 How Casbin K8s-Gatw Casbin K8s-Gatekekeeper Weeper Works?orks?

K8s-Gatekeeper is an admission webhook for K8s that uses Casbin to apply arbitrary user-defined access control

rules to help prevent any operation on K8s that the administrator doesn't want.

Casbin is a powerful and efficient open-source access control library. It provides support for enforcing

authorization based on various access control models. For more details about Casbin, see Overview.

Admission webhooks in K8s are HTTP callbacks that receive 'admission requests' and do something with them. In

particular, K8s-Gatekeeper is a special type of admission webhook: 'ValidatingAdmissionWebhook', which can

decide whether to accept or reject this admission request or not. As for admission requests, they are HTTP

requests describing an operation on specified resources of K8s (for example, creating/deleting a deployment). For

more about admission webhooks, see K8s official documentation.

11.2 An Example Illustrating Ho.2 An Example Illustrating How It Ww It Worksorks

For example, when somebody wants to create a deployment containing a pod running nginx (using kubectl or K8s

clients), K8s will generate an admission request, which (if translated into YAML format) can be something like this:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

spec:

selector:

matchLabels:

app: nginx

replicas: 1

template:

metadata:

labels:

app: nginx

spec:

containers:

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#what-are-admission-webhooks

This request will go through the process of all the middleware shown in the picture, including our K8s-

Gatekeeper. K8s-Gatekeeper can detect all the Casbin enforcers stored in K8s's etcd, which is created and

maintained by the user (via kubectl or the Go client we provide). Each enforcer contains a Casbin model and a

Casbin policy. The admission request will be processed by every enforcer, one by one, and only by passing all

enforcers can a request be accepted by this K8s-Gatekeeper.

(If you do not understand what a Casbin enforcer, model, or policy is, see this document: Get Started).

For example, for some reason, the administrator wants to forbid the appearance of the image 'nginx:1.14.1' while

allowing 'nginx:1.3.1'. An enforcer containing the following rule and policy can be created (We will explain how to

create an enforcer, what these models and policies are, and how to write them in the following chapters).

Model:

Policy:

By creating an enforcer containing the model and policy above, the previous admission request will be rejected by

this enforcer, which means K8s won't create this deployment.

2 Install K8s-gat2 Install K8s-gatekekeepereeper
There are three methods available for installing K8s-gatekeeper: External webhook, Internal webhook, and Helm.

NONOTETE

Note: These methods are only meant for users to try out K8s-gatekeeper and are not secure. If you wish to

use it in a productive environment, please ensure that you read Chapter 5. Advanced settings and make

[request_definition]

r = obj

[policy_definition]

p = obj,eft

[policy_effect]

e = !some(where (p.eft == deny))

[matchers]

m = r.obj.Request.Namespace == "default" && r.obj.Request.Resource.Resource

=="deployments" && \

access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0, "Image") == p.obj

p, "nginx:1.13.1",allow

p, "nginx:1.14.1",deny

any necessary modifications before installation.

2.2.1 Int1 Internal wernal webhookebhook

2.2.11..1 St1 Step 1: Build tep 1: Build the imagehe image

For the internal webhook method, the webhook itself will be implemented as a service within Kubernetes. To

create the necessary service and deployment, you need to build an image of K8s-gatekeeper. You can build your

own image by running the following command:

This command will create a local image called 'k8s-gatekeeper:latest'.

NONOTETE

Note: If you are using minikube, please execute eval $(minikube -p minikube docker-env) before

running 'docker build'.

2.2.11.2 St.2 Step 2: Set up serep 2: Set up services and deplovices and deploymentyments fs for K8s-gator K8s-gatekekeepereeper

Run the following commands:

This will start running K8s-gatekeeper, and you can confirm this by running kubectl get pods .

2.2.11..3 St3 Step 3: Install CRD Rep 3: Install CRD Resouresources fces for K8s-gator K8s-gatekekeepereeper

Run the following commands:

2.2 Ext2.2 External wernal webhookebhook

For the external webhook method, K8s-gatekeeper will be running outside of Kubernetes, and Kubernetes will

access K8s-gatekeeper as it would access a regular website. Kubernetes has a mandatory requirement that the

admission webhook must be HTTPS. For the purpose of trying out K8s-gatekeeper, we have provided a set of

certificates and a private key (although this is not secure). If you prefer to use your own certificate, please refer to

docker build --target webhook -t k8s-gatekeeper .

kubectl apply -f config/rbac.yaml

kubectl apply -f config/webhook_deployment.yaml

kubectl apply -f config/webhook_internal.yaml

kubectl apply -f config/auth.casbin.org_casbinmodels.yaml

kubectl apply -f config/auth.casbin.org_casbinpolicies.yaml

Chapter 5. Advanced settings for instructions on adjusting the certificate and private key.

The certificate we provide is issued for 'webhook.domain.local'. So, modify the host (e.g., /etc/hosts) and point

'webhook.domain.local' to the IP address on which K8s-gatekeeper is running.

Then execute the following command:

2.2.3 Install K8s-gat3 Install K8s-gatekekeeper via Helmeeper via Helm

2.2.33..1 St1 Step 1: Build tep 1: Build the imagehe image

Please refer to Chapter 2.1.1.

2.2.33.2 Helm installation.2 Helm installation

Run the command helm install k8sgatekeeper ./k8sgatekeeper .

33. T. Trry K8s-gaty K8s-gatekekeepereeper

33..1 Cr1 Createate Casbin Model and Pe Casbin Model and Policyolicy

You have two methods to create a model and policy: via kubectl or via the go-client we provide.

33..11..1 Cr1 Createate/Update/Update Casbin Model and Pe Casbin Model and Policy via kubectolicy via kubectll

In K8s-gatekeeper, the Casbin model is stored in a CRD resource called 'CasbinModel'. Its definition is located in

config/auth.casbin.org_casbinmodels.yaml .

There are examples in example/allowed_repo/model.yaml . Pay attention to the following fields:

• metadata.name: the name of the model. This name MUST be the same as the name of the CasbinPolicy

object related to this model, so that K8s-gatekeeper can pair them and create an enforcer.

• spec.enable: if this field is set to "false", this model (as well as the CasbinPolicy object related to this model)

will be ignored.

• spec.modelText: a string that contains the model text of a Casbin model.

The Casbin Policy is stored in another CRD resource called 'CasbinPolicy', whose definition can be found in

config/auth.casbin.org_casbinpolicies.yaml .

go mod tidy

go mod vendor

go run cmd/webhook/main.go

kubectl apply -f config/auth.casbin.org_casbinmodels.yaml

kubectl apply -f config/auth.casbin.org_casbinpolicies.yaml

kubectl apply -f config/webhook_external.yaml

There are examples in example/allowed_repo/policy.yaml . Pay attention to the following fields:

• metadata.name: the name of the policy. This name MUST be the same as the name of the CasbinModel

object related to this policy, so that K8s-gatekeeper can pair them and create an enforcer.

• spec.policyItem: a string that contains the policy text of a Casbin model.

After creating your own CasbinModel and CasbinPolicy files, use the following command to apply them:

Once a pair of CasbinModel and CasbinPolicy is created, K8s-gatekeeper will be able to detect it within 5

seconds.

33..11.2 Cr.2 Createate/Update/Update Casbin Model and Pe Casbin Model and Policy via tolicy via the go-client whe go-client we pre proovidevide

We understand that there may be situations where it is not convenient to use the shell to execute commands

directly on a node of the K8s cluster, such as when you are building an automatic cloud platform for your

corporation. Therefore, we have developed a go-client to create and maintain CasbinModel and CasbinPolicy.

The go-client library is located in pkg/client .

In client.go , we provide a function to create a client.

The externalClient parameter determines whether K8s-gatekeeper is running inside the K8s cluster or not.

In model.go , we provide various functions to create, delete, and modify CasbinModel. You can find out how to

use these interfaces in model_test.go .

In policy.go , we provide various functions to create, delete, and modify CasbiPolicy. You can find out how to

use these interfaces in policy_test.go .

33..11.2 T.2 Trry Whety Whether K8s-gather K8s-gatekekeeper Weeper Worksorks

Suppose you have already created the exact model and policy in example/allowed_repo . Now, try the following

command:

You should find that K8s will reject this request and mention that the webhook was the reason why this request is

rejected. However, when you try to apply example/allowed_repo/testcase/approve_2.yaml , it will be

accepted.

kubectl apply -f <filename>

func NewK8sGateKeeperClient(externalClient bool) (*K8sGateKeeperClient, error)

kubectl apply -f example/allowed_repo/testcase/reject_1.yaml

44. Ho. How tw to Wo Writrite Model and Pe Model and Policy witolicy with K8s-gath K8s-gatekekeepereeper
First of all, make sure you are familiar with the basic grammar of Casbin Models and Policies. If you are not, please

read the Get Started section first. In this chapter, we assume that you already understand what Casbin Models

and Policies are.

44..1 R1 Request Definition of Modelequest Definition of Model

When K8s-gatekeeper is authorizing a request, the input is always an object: the Go object of the Admission

Request. This means that the enforcer will always be used like this:

where admission is an AdmissionReview object defined by K8s's official go api "k8s.io/api/admission/v1" .

You can find the definition of this struct in this repository: https://github.com/kubernetes/api/blob/master/

admission/v1/types.go. For more information, you can also refer to https://kubernetes.io/docs/reference/access-

authn-authz/extensible-admission-controllers/#webhook-request-and-response.

Therefore, for any model used by K8s-gatekeeper, the definition of the request_definition should always be

like this:

The name 'obj' is not mandatory, as long as the name is consistent with the name used in the [matchers] part.

44.2 Mat.2 Matchers of Modelchers of Model

You are supposed to use the ABAC feature of Casbin to write your rules. However, the expression evaluator

integrated in Casbin does not support indexing in maps or arrays(slices), nor the expansion of arrays. Therefore,

K8s-gatekeeper provides various 'Casbin functions' as extensions to implement these features. If you still find

that your demand cannot be fulfilled by these extensions, feel free to start an issue, or create a pull request.

If you are not familiar with Casbin functions, you can refer to Function for more information.

Here are the extension functions:

44.2..2.1 Ext1 Extension functionsension functions

44.2..2.11..1 access1 access

Access is used to solve the problem that Casbin does not support indexing in maps or arrays. The example

ok, err := enforcer.Enforce(admission)

[request_definition]

r = obj

https://github.com/kubernetes/api/blob/master/admission/v1/types.go
https://github.com/kubernetes/api/blob/master/admission/v1/types.go
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#webhook-request-and-response
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#webhook-request-and-response

example/allowed_repo/model.yaml demonstrates the usage of this function:

In this matcher, access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0, "Image") is

equivalent to r.obj.Request.Object.Object.Spec.Template.Spec.Containers[0].Image , where

r.obj.Request.Object.Object.Spec.Template.Spec.Containers is a slice.

Access can also call simple functions that have no parameters and return a single value. The example example/

container_resource_limit/model.yaml demonstrates this:

In this matcher, access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0,

"Resources","Limits","cpu","Value") is equivalent to

r.obj.Request.Object.Object.Spec.Template.Spec.Containers[0].Resources.Limits["cpu"].Value() ,

where r.obj.Request.Object.Object.Spec.Template.Spec.Containers[0].Resources.Limits is a map,

and Value() is a simple function that has no parameters and returns a single value.

44.2..2.11.2 access.2 accessWitWithhWildcarWildcardd

Sometimes, you may have a demand like this: all elements in an array must have a prefix "aaa". However, Casbin

does not support for loops. With accessWithWildcard and the "map/slice expansion" feature, you can easily

implement such a demand.

For example, suppose a.b.c is an array [aaa,bbb,ccc,ddd,eee] , then the result of

accessWithWildcard(a,"b","c","*") will be a slice [aaa,bbb,ccc,ddd,eee] . By using the wildcard * , the

slice is expanded.

Similarly, the wildcard can be used more than once. For example, the result of

accessWithWildcard(a,"b","c","*","*") will be [a.b.c[0][0], a.b.c[0][1], ..., a.b.c[1][0],

a.b.c[1][1], ...] .

44.2..2.11..3 F3 Functions Supporunctions Supporting Vting Variable-lengtariable-length Arh Argumentgumentss

In the expression evaluator of Casbin, when a parameter is an array, it will be automatically expanded as a

[matchers]

m = r.obj.Request.Namespace == "default" && r.obj.Request.Resource.Resource

=="deployments" && \

access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0, "Image") == p.obj

[matchers]

m = r.obj.Request.Namespace == "default" && r.obj.Request.Resource.Resource

=="deployments" && \

parseFloat(access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0,

"Resources","Limits","cpu","Value")) >= parseFloat(p.cpu) && \

parseFloat(access(r.obj.Request.Object.Object.Spec.Template.Spec.Containers , 0,

"Resources","Limits","memory","Value")) >= parseFloat(p.memory)

variable-length argument. Utilizing this feature to support array/slice/map expansion, we have also integrated

several functions that accept an array/slice as a parameter:

• contain(): accepts multiple parameters and returns whether any parameter (except the last parameter) equals

the last parameter.

• split(a,b,c...,sep,index): returns a slice that contains [splits(a,sep)[index], splits(b,sep)[index],

splits(a,sep)[index], ...] .

• len(): returns the length of the variable-length argument.

• matchRegex(a,b,c...,regex): returns whether all of the given parameters (a , b , c , ...) match the given regex.

Here is an example in example/disallowed_tag/model.yaml :

Assuming that accessWithWildcard(r.obj.Request.Object.Object.Spec.Template.Spec.Containers ,

"*", "Image") returns ["a:b", "c:d", "e:f", "g:h"] , because splits supports variable-length arguments

and performs the splits operation on each element, the element at index 1 will be selected and returned.

Therefore, split(accessWithWildcard(r.obj.Request.Object.Object.Spec.Template.Spec.Containers ,

"*", "Image"),":",1) returns ["b","d","f","h"] . And

contain(split(accessWithWildcard(r.obj.Request.Object.Object.Spec.Template.Spec.Containers ,

"*", "Image"),":",1) , p.obj) returns whether p.obj is contained in ["b","d","f","h"] .

44.2..2.11.2 T.2 Type Conype Convversion Fersion Functionsunctions

• ParseFloat(): Parses an integer to a float (this is necessary because any number used in comparison must be

converted into a float).

• ToString(): Converts an object to a string. This object must have a basic type of string (for example, an object

of type XXX when there is a statement type XXX string).

• IsNil(): Returns whether the parameter is nil.

55. Adv. Advanced Settingsanced Settings

55..1 About Cer1 About Certificattificateses

In Kubernetes (k8s), it is mandatory that a webhook should use HTTPS. There are two approaches to achieve this:

• Use self-signed certificates (examples in this repository use this method)

• Use a normal certificate

[matchers]

m = r.obj.Request.Namespace == "default" && r.obj.Request.Resource.Resource

=="deployments" && \

contain(split(accessWithWildcard(r.obj.Request.Object.Object.Spec.Template.Spec.Containers

, "*", "Image"),":",1) , p.obj)

55..11..1 Self1 Self-signed cer-signed certificattificateses

Using a self-signed certificate means that the Certificate Authority (CA) issuing the certificate is not one of the

well-known CAs. Therefore, you must let k8s know about this CA.

Currently, the example in this repository uses a self-made CA, whose private key and certificate are stored in

config/certificate/ca.crt and config/certificate/ca.key respectively. The certificate for the webhook

is config/certificate/server.crt , which is issued by the self-made CA. The domains of this certificate are

"webhook.domain.local" (for external webhook) and "casbin-webhook-svc.default.svc" (for internal webhook).

Information about the CA is passed to k8s via webhook configuration files. Both config/

webhook_external.yaml and config/webhook_internal.yaml have a field called "CABundle", which contains a

base64 encoded string of the CA's certificate.

In case you need to change the certificate/domain (for example, if you want to put this webhook into another

namespace of k8s while using an internal webhook, or if you want to change the domain while using an external

webhook), the following procedures should be followed:

1. Generate a new CA:

◦ Generate the private key for the fake CA:

◦ Remove the password protection of the private key:

2. Generate a private key for the webhook server:

3. Use the self-generated CA to sign the certificate for the webhook:

◦ Copy your system's openssl config file for temporary use. You can find out the location of the config file

by running openssl version -a , usually called openssl.cnf .

◦ In the config file:

▪ Find the [req] paragraph and add the following line: req_extensions = v3_req

▪ Find the [v3_req] paragraph and add the following line: subjectAltName = @alt_names

openssl genrsa -des3 -out ca.key 2048

openssl rsa -in ca.key -out ca.key

openssl genrsa -des3 -out server.key 2048

openssl rsa -in server.key -out server.key

▪ Append the following lines to the file:

Note: Replace 'casbin-webhook-svc.default.svc' with the real service name of your own service if

you decide to modify the service name.

◦ Use the modified config file to generate a certificate request file:

◦ Use the self-made CA to respond to the request and sign the certificate:

4. Replace the 'CABundle' field: Both config/webhook_external.yaml and config/webhook_internal.yaml

have a field called "CABundle", which contains a base64 encoded string of the certificate of the CA. Update

this field with the new certificate.

5. If you are using helm, similar changes need to be applied to the helm charts.

55..11.2 Legal cer.2 Legal certificattificateses

If you use legal certificates, you do not need to go through all these procedures. Remove the "CABundle" field in

config/webhook_external.yaml and config/webhook_internal.yaml , and change the domain in these files

to the domain you own.

[alt_names]

DNS.2=<The domain you want>

openssl req -new -nodes -keyout server.key -out server.csr -config openssl.cnf

openssl x509 -req -days 3650 -in server.csr -out server.crt -CA ca.crt -CAkey

ca.key -CAcreateserial -extensions v3_req -extensions SAN -extfile openssl.cnf

AutAuthorization of Serhorization of Servicevice
Mesh tMesh thrhrough Enough Envvooyy
Envoy-authz is a middleware for Envoy that performs external RBAC & ABAC

authorization through casbin. This middleware uses Envoy's external authorization

API via a gRPC server. This proxy can be deployed on any type of Envoy-based

service mesh, such as Istio.

RRequirequirementementss
• Envoy 1.17+

• Istio or any other type of service mesh

• grpc dependencies

Dependencies are managed using go.mod .

WWorking of torking of the Middlewarhe Middlewaree
• A client makes an HTTP request.

• The Envoy proxy sends the request to the gRPC server.

• The gRPC server authorizes the request based on casbin policies.

• If authorized, the request is forwarded; otherwise, it is denied.

The gRPC server is based on protocol buffer from external_auth.proto in Envoy.

// A generic interface for performing authorization checks on

https://github.com/casbin/envoy-authz
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/ext_authz_filter.html
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/ext_authz_filter.html
https://github.com/envoyproxy/envoy/blob/master/api/envoy/service/auth/v2alpha/external_auth.proto

From the above proto file, we need to use the Check() service in the

authorization server.

UsageUsage
• Define the Casbin policies in the config files following this guide.

You can verify/test your policies using the online casbin-editor.

• Start the authentication server by running:

• Load the Envoy configuration:

Once Envoy starts, it will intercept requests for the authorization process.

IntIntegrating witegrating with Istioh Istio
To make this middleware work, you need to send custom headers containing

usernames in the JWT token or headers. You can refer to the official Istio

documentation for more information on modifying Request Headers .

go build .

./authz

envoy -c authz.yaml -l info

http://localhost:3000/editor
https://istio.io/v1.4/docs/tasks/policy-enforcement/control-headers/
https://istio.io/v1.4/docs/tasks/policy-enforcement/control-headers/

ManagementManagement

📄📄 Admin P Admin Porortaltal

Admin portal for Casbin

📄📄 Casbin Ser Casbin Servicevice

Using Casbin as a Service

📄📄 Command-line T Command-line Toolsools

Command-line Tools

📄📄 Log & Err Log & Error Handlingor Handling

Logging and error handling in Casbin

📄📄 F Frrontontend Usageend Usage

Casbin.js is a Casbin addon that facilitates your access-control management in the frontend application

Admin PAdmin Porortaltal
We provide a web-based portal called Casdoor for model management and policy

management:

https://casdoor.org/

There are also third-party admin portal projects that use Casbin as an

authorization engine. You can get started building your own Casbin service based

on these projects.

GoGo JaJavvaa Node.jsNode.js PytPythonhon PHPPHP

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

Casdoor Casbin

React +

Ant

Design

Beego
Based on Beego +

XORM + React

go-admin-

team/go-

admin

@go-admin-

team

Vue +

Element

UI

Gin

go-admin Based on

Gin + Casbin +

GORM

gin-vue- flipped- Vue + Gin Based on Gin +

https://casdoor.org/
https://github.com/go-admin-team/go-admin
https://github.com/go-admin-team/go-admin
https://github.com/go-admin-team/go-admin
https://github.com/go-admin-team
https://github.com/go-admin-team
https://github.com/flipped-aurora/gin-vue-admin
https://github.com/flipped-aurora

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

admin aurora
Element

UI
GORM + Vue

gin-admin @LyricTian

React +

Ant

Design

Gin

RBAC scaffolding

based on Gin +

GORM + Casbin +

Ant Design React

go-admin @hequan2017 None Gin

Go RESTful API

gateway based on

Gin + GORM + JWT +

RBAC (Casbin)

zeus-admin bullteam

Vue +

Element

UI

Gin

Unified Permission

management

platform based on

JWT + Casbin

IrisAdminApi @snowlyg

Vue +

Element

UI

Iris
Backend API based

on Iris + Casbin

Gfast @tiger1103

Vue +

Element

UI

Go

Frame

Admin portal based

on GF (Go Frame)

echo-admin

(Frontend,

Backend)

@RealLiuSha

Vue 2.x

+

Element

Echo

Admin portal based

on Echo + Gorm +

Casbin + Uber-FX

https://github.com/flipped-aurora/gin-vue-admin
https://github.com/flipped-aurora
https://github.com/LyricTian/gin-admin
https://github.com/LyricTian
https://github.com/hequan2017/go-admin
https://github.com/hequan2017
https://github.com/bullteam/zeus-admin
https://github.com/bullteam
https://github.com/snowlyg/IrisAdminApi
https://github.com/snowlyg
https://github.com/tiger1103/gfast
https://github.com/tiger1103
https://github.com/RealLiuSha/echo-admin-ui
https://github.com/RealLiuSha/echo-admin
https://github.com/RealLiuSha

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

UI

Spec-

Center

@atul-

wankhade
None Mux

Golang RESTful

platform based on

Casbin + MongoDB

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

spring-

boot-

web

@BazookaW None SpringBoot

Admin portal based on

SpringBoot 2.0 +

MyBatisPlus + Casbin

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

node-

mysql-rest-

api

@JoemaNequinto None Express

A boilerplate

application for

building RESTful

APIs Microservice

in Node.js using

Express,

Sequelize, JWT

and Casbin.

Casbin-

Role-Mgt-

Dashboard-

RBAC

@alikhan866

React +

Material

UI

Express

Beginner friendly

RBAC

management with

Enforcer

integration to

check

https://github.com/atul-wankhade/Spec-Center
https://github.com/atul-wankhade/Spec-Center
https://github.com/atul-wankhade
https://github.com/atul-wankhade
https://github.com/wangchengming666/spring-boot-web
https://github.com/wangchengming666/spring-boot-web
https://github.com/wangchengming666/spring-boot-web
https://github.com/wangchengming666
https://github.com/JoemaNequinto/node-mysql-rest-api
https://github.com/JoemaNequinto/node-mysql-rest-api
https://github.com/JoemaNequinto/node-mysql-rest-api
https://github.com/JoemaNequinto
https://github.com/alikhan866/Casbin-Role-Mgt-Dashboard-RBAC
https://github.com/alikhan866/Casbin-Role-Mgt-Dashboard-RBAC
https://github.com/alikhan866/Casbin-Role-Mgt-Dashboard-RBAC
https://github.com/alikhan866/Casbin-Role-Mgt-Dashboard-RBAC
https://github.com/alikhan866

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

enforcement

result on the go

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

fastapi-

best-

architecture

@WuClan

Vue +

Arco-

design

FastAPI

Admin portal

based on FastAPI,

SQLAlchemy,

JWT and RBAC

fastapi-

mysql-

generator

@CoderCharm None FastAPI
FastAPI + MySQL

+ JWT + Casbin

FastAPI-

MySQL-

Tortoise-

Casbin

@xingxingzaixian None FastAPI

FastAPI + MySQL

+ Tortoise +

Casbin

openstack-

policy-

editor

Casbin Bootstrap Django
The Web UI for

Casbin

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

Tadmin @leeqvip AmazeUI ThinkPHP

Non-intrusive

backend

framework

based on

https://github.com/fastapi-practices/fastapi_best_architecture
https://github.com/fastapi-practices/fastapi_best_architecture
https://github.com/fastapi-practices/fastapi_best_architecture
https://github.com/wu-clan
https://github.com/wxy2077/fastapi-mysql-generator
https://github.com/wxy2077/fastapi-mysql-generator
https://github.com/wxy2077/fastapi-mysql-generator
https://github.com/wxy2077
https://github.com/xingxingzaixian/FastAPI-MySQL-Tortoise-Casbin
https://github.com/xingxingzaixian/FastAPI-MySQL-Tortoise-Casbin
https://github.com/xingxingzaixian/FastAPI-MySQL-Tortoise-Casbin
https://github.com/xingxingzaixian/FastAPI-MySQL-Tortoise-Casbin
https://github.com/xingxingzaixian
https://github.com/casbin/openstack-policy-editor
https://github.com/casbin/openstack-policy-editor
https://github.com/casbin/openstack-policy-editor
https://github.com/leeqvip/tadmin
https://github.com/leeqvip

PrProjectoject AutAuthorhor FFrrontontendend BackBackendend DescriptionDescription

ThinkPHP

video.tinywan.com @Tinywanner LayUI ThinkPHP

RESTful API

gateway

based on

ThinkPHP5 +

ORM + JWT +

RBAC (Casbin)

laravel-casbin-

admin
@pl1998

Vue +

Element

UI

Laravel

RBAC

permission

management

system based

on vue-

element-

admin and

Laravel

larke-admin

(Frontend,

Backend)

@deatil

Vue 2 +

Element

UI

Laravel 8

Admin portal

based on

Laravel 8,

JWT and

RBAC

hyperf-vuetify-

admin
@TragicMale

Vue +

Vuetify

2.x

Hyperf

Admin portal

based on

Hyperf,

Vuetify and

Casbin

https://github.com/Tinywan/video.tinywan.com
https://github.com/Tinywan
https://github.com/pl1998/laravel-casbin-admin
https://github.com/pl1998/laravel-casbin-admin
https://github.com/pl1998
https://github.com/deatil/larke-admin-frontend
https://github.com/deatil/larke-admin
https://github.com/deatil
https://github.com/TragicMale/hyperf-vuetify-admin
https://github.com/TragicMale/hyperf-vuetify-admin
https://github.com/TragicMale

Casbin SerCasbin Servicevice
HoHow tw to Use Casbin as a Sero Use Casbin as a Service?vice?

NameName DescriptionDescription

Casbin

Server

The official "Casbin as a Service" solution based on gRPC.

Both Management API and RBAC API are provided.

middleware-

acl
RESTful access control middleware based on Casbin.

auth-server Auth Server for proofreading services.

https://github.com/casbin/casbin-server
https://github.com/casbin/casbin-server
https://grpc.io/
https://github.com/luk4z7/middleware-acl
https://github.com/luk4z7/middleware-acl
https://github.com/ZettaAI/auth-server

Command-line TCommand-line Toolsools
Casbin CLIsCasbin CLIs are command-line tools that provide a command-line interface for

Casbin, enabling you to use all of Casbin APIs in the shell. This documentation

covers the usage of Casbin CLI for various languages including Rust, Java, Go,

and NodeJs.

InstallationInstallation

Go (Go (casbin-go-clicasbin-go-cli))

1. Clone project from repository

2. Build project

Rust (Rust (casbin-rustcasbin-rust-cli-cli))

FFrrom cratom crates.ioes.io

git clone https://github.com/casbin/casbin-go-cli.git

cd casbin-go-cli

go build -o casbin

cargo install casbin-rust-cli

FFrrom sourom sourcece

1. Clone project from repository

2. Build project

JaJavva (a (casbin-jacasbin-javva-clia-cli))

1. Clone project from repository

2. Build project, the jar package will be generated in the target directory

git clone https://github.com/casbin-rs/casbin-rust-cli.git

cd casbin-rust-cli

cargo build --release

git clone https://github.com/jcasbin/casbin-java-cli.git

cd casbin-java-cli

mvn clean install

UsageUsage

OptionsOptions

optionsoptions descriptiondescription mustmust rremarkemark

-m, --model
The path of the model file

or model text
y

Please wrap it with ""

and separate each line

with \|

-p, --

policy

The path of the policy file

or policy text
y

Please wrap it with ""

and separate each line

with \|

-e, --

enforce
Check permissions n Please wrap it with ""

-ex, --

enforceEx

Check permissions and

get which policy it is
n Please wrap it with ""

-AF, --

addFuntion

Add custom funtion (

casbin-java-cli only)
n

Please wrap it with ""

and separate each line

with \|

-ap, --

addPolicy

Add a policy rule to the

policy file (casbin-java-cli

only)

n Please wrap it with ""

optionsoptions descriptiondescription mustmust rremarkemark

-rp, --

removePolicy

Remove a policy rule from

the policy file (casbin-

java-cli only)

n Please wrap it with ""

Get starGet startteded
• Check whether Alice has read permission on data1

{"allow":true,"explain":null}

{"allow":true,"explain":null}

• Check whether Alice has write permission for data2. If so, display the

effective policy.

./casbin enforce -m "examples/rbac_model.conf" -p "examples/

rbac_policy.csv" "alice" "data1" "read"

./casbin enforce -m "[request_definition]\nr = sub, obj,

act\n[policy_definition]\np = sub, obj,

act\n[role_definition]\ng = _, _\n[policy_effect]\ne =

some(where (p.eft == allow))\n[matchers]\nm = g(r.sub,

p.sub) && r.obj == p.obj && r.act == p.act" -p "p, alice,

data1, read\np, bob, data2, write\np, data2_admin, data2,

read\np, data2_admin, data2, write\ng, alice, data2_admin"

"alice" "data1" "read"

{"allow":true,"explain":["data2_admin","data2","write"]}

• Add a policy to the policy file (casbin-java-cli only)

{"allow":true,"explain":null}

• Delete a policy from the policy file (casbin-java-cli only)

{"allow":true,"explain":null}

./casbin enforceEx -m "examples/rbac_model.conf" -p

"examples/rbac_policy.csv" "alice" "data2" "write"

./casbin addPolicy -m "examples/rbac_model.conf" -p

"examples/rbac_policy.csv" "alice" "data2" "write"

./casbin removePolicy -m "examples/rbac_model.conf" -p

"examples/rbac_policy.csv" "alice" "data2" "write"

Log & ErrLog & Error Handlingor Handling
LoggingLogging
Casbin uses the built-in log to print logs to the console by default, like:

Logging is not enabled by default. You can toggle it via Enforcer.EnableLog()

or the last parameter of NewEnforcer() .

NONOTETE

For Golang: We already support logging the model, enforce request, role,

and policy in Golang. You can define your own log for logging Casbin.

NONOTETE

For Python: PyCasbin leverages the default Python logging mechanism.

PyCasbin makes a call to logging.getLogger() to set the logger. No

special logging configuration is needed other than initializing the logger in

the parent application. If no logging is initialized within the parent

application, you will not see any log messages from PyCasbin. At the same

time, when you enable logs in PyCasbin, you can specify the logging

configuration through the parameter logging_config . If no configuration

is specified, it will use the default log configuration. For other PyCasbin

extensions, you can refer to the Django logging docs if you are a Django

user. For other Python users, you should refer to the Python logging docs

to configure the logger.

2017/07/15 19:43:56 [Request: alice, data1, read ---> true]

https://github.com/casbin/pycasbin/blob/c33cabfa0ac65cd09cf812a65e71794d64cb5132/casbin/util/log.py#L6C1-L6C1
https://docs.djangoproject.com/en/4.2/topics/logging/
https://docs.python.org/3/library/logging.config.html

Use diffUse differerent loggers fent loggers for diffor differerent enfent enfororcerscers

Every enforcer can have its own logger to log information, and it can be changed

at runtime.

And you can use a proper logger via the last parameter of NewEnforcer() . If you

are using this way to initialize your enforcer, you don't need to use the enabled

parameter because the priority of the enabled field in the logger is higher.

SupporSupportted loggersed loggers

We provide some loggers to help you log information.

GoGo PHPPHP

LoggerLogger AutAuthorhor DescriptionDescription

Default Casbin The default logger using golang log.

// Set a default logger as enforcer e1's logger.

// This operation can also be seen as changing the logger of e1

at runtime.

e1.SetLogger(&Log.DefaultLogger{})

// Set another logger as enforcer e2's logger.

e2.SetLogger(&YouOwnLogger)

// Set your logger when initializing enforcer e3.

e3, _ := casbin.NewEnforcer("examples/rbac_model.conf", a,

logger)

https://github.com/casbin/casbin/blob/master/log/default_logger.go

LoggerLogger AutAuthorhor DescriptionDescription

logger

(built-in)

Zap logger Casbin
Using zap, provide json encoded log and you can

customize more with your own zap-logger.

LoggerLogger AutAuthorhor DescriptionDescription

psr3-bridge logger Casbin Provides a PSR-3 compliant bridge.

HoHow tw to writo write a loggere a logger

Your logger should implement the Logger interface.

MetMethodhod TTypeype DescriptionDescription

EnableLog() mandatory Control whether to print the message.

IsEnabled() mandatory Show the current logger's enabled status.

LogModel() mandatory Log info related to the model.

LogEnforce() mandatory Log info related to enforcing.

LogRole() mandatory Log info related to the role.

LogPolicy() mandatory Log info related to the policy.

https://github.com/casbin/casbin/blob/master/log/default_logger.go
https://github.com/casbin/casbin/blob/master/log/default_logger.go
https://github.com/casbin/zap-logger
https://github.com/uber-go/zap
https://github.com/php-casbin/psr3-bridge
https://www.php-fig.org/psr/psr-3/
https://github.com/casbin/casbin/blob/master/log/logger.go#L20

You can pass your custom logger to Enforcer.SetLogger() .

Here is an example of how to customize a logger for Golang:

import (

"fmt"

"log"

"strings"

)

// DefaultLogger is the implementation for a Logger using

golang log.

type DefaultLogger struct {

enabled bool

}

func (l *DefaultLogger) EnableLog(enable bool) {

l.enabled = enable

}

func (l *DefaultLogger) IsEnabled() bool {

return l.enabled

}

func (l *DefaultLogger) LogModel(model [][]string) {

if !l.enabled {

return

}

var str strings.Builder

str.WriteString("Model: ")

for _, v := range model {

str.WriteString(fmt.Sprintf("%v\n", v))

}

log.Println(str.String())

}

ErrError handlingor handling
Errors or panics may occur when you use Casbin for reasons like:

1. Invalid syntax in the model file (.conf).

2. Invalid syntax in the policy file (.csv).

3. Custom errors from storage adapters, e.g., MySQL fails to connect.

4. Casbin's bug.

There are five main functions you may need to be aware of for errors or panics:

FFunctionunction BehaBehavior on errvior on erroror

NewEnforcer() Returns an error

LoadModel() Returns an error

LoadPolicy() Returns an error

SavePolicy() Returns an error

Enforce() Returns an error

NONOTETE

NewEnforcer() calls LoadModel() and LoadPolicy() internally. So you

don't have to call the latter two when using NewEnforcer() .

https://godoc.org/github.com/casbin/casbin#NewEnforcer
https://godoc.org/github.com/casbin/casbin#Enforcer.LoadModel
https://godoc.org/github.com/casbin/casbin#Enforcer.LoadPolicy
https://godoc.org/github.com/casbin/casbin#Enforcer.SavePolicy
https://godoc.org/github.com/casbin/casbin#Enforcer.Enforce

Enable and disableEnable and disable
The enforcer can be disabled via the Enforcer.EnableEnforce() function.

When it's disabled, Enforcer.Enforce() will always return true . Other

operations like adding or removing policies are not affected. Here's an example:

e := casbin.NewEnforcer("examples/basic_model.conf", "examples/

basic_policy.csv")

// Will return false.

// By default, the enforcer is enabled.

e.Enforce("non-authorized-user", "data1", "read")

// Disable the enforcer at runtime.

e.EnableEnforce(false)

// Will return true for any request.

e.Enforce("non-authorized-user", "data1", "read")

// Enable the enforcer again.

e.EnableEnforce(true)

// Will return false.

e.Enforce("non-authorized-user", "data1", "read")

FFrrontontend Usageend Usage
Casbin.js is a Casbin addon that facilitates your access-control management in

the frontend application.

InstallationInstallation

or

FFrrontontend Middlewarend Middlewareses

MiddlewarMiddlewaree TTypeype AutAuthorhor DescriptionDescription

react-

authz
React Casbin React wrapper for Casbin.js

rbac-react React @daobeng
Role Based Access Control in React

using HOCs, CASL and Casbin.js

vue-authz Vue Casbin Vue wrapper for Casbin.js

npm install casbin.js

npm install casbin

yarn add casbin.js

https://github.com/casbin/casbin.js
https://github.com/casbin-js/react-authz
https://github.com/casbin-js/react-authz
https://github.com/daobeng/rbac-react
https://github.com/daobeng
https://github.com/casbin-js/vue-authz

MiddlewarMiddlewaree TTypeype AutAuthorhor DescriptionDescription

angular-

authz
Angular Casbin Angular wrapper for Casbin.js

Quick StarQuick Startt
You can use the manual mode in your frontend application and set the

permissions whenever you wish.

Now we have an authorizer, authorizer . We can get permission rules from it by

using the authorizer.can() and authorizer.cannot() APIs. The return values

of these 2 APIs are JavaScript Promises (details here), so we should use the

then() method of the return value like this:

const casbinjs = require("casbin.js");

// Set the user's permission:

// He/She can read `data1` and `data2` objects and can write

`data1` object

const permission = {

"read": ["data1", "data2"],

"write": ["data1"]

}

// Run casbin.js in manual mode, which requires you to set the

permission manually.

const authorizer = new casbinjs.Authorizer("manual");

result = authorizer.can("write", "data1");

result.then((success, failed) => {

https://github.com/casbin-js/angular-authz
https://github.com/casbin-js/angular-authz
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

The cannot() API is used in the same way:

In the code above, the success variable in the parameters means the request

gets the result without throwing an error and doesn't mean that the permission

rule is true . The failed variable is also unrelated to the permission rules. It only

makes sense when something goes wrong in the process of the request.

You can refer to our React example to see a practical usage of Casbin.js.

PPermission Objectermission Object

Casbin.js will accept a JSON object to manipulate the corresponding permission of

a visitor. For example:

The permission object above shows that the visitor can read the data1 and

data2 objects, while they can only write the data1 objects.

result = authorizer.cannot("read", "data2");

result.then((success, failed) => {

if (success) {

console.log("you cannot read data2");

} else {

console.log("you can read data2");

}

});

// output: you can read data2

{

"read": ["data1", "data2"],

"write": ["data1"]

}

https://github.com/casbin-js/examples

AdvAdvanced Usageanced Usage
Casbin.js provides a perfect solution for integrating your frontend access-control

management with your backend Casbin service.

Use the auto mode and specify your endpoint when initializing the Casbin.js

Authorizer , it will automatically sync the permission and manipulate the

frontend status.

Correspondingly, you need to expose an interface (e.g. a RestAPI) to generate the

permission object and pass it to the frontend. In your API controller, call

const casbinjs = require('casbin.js');

// Set your backend Casbin service URL

const authorizer = new casbinjs.Authorizer(

'auto', // mode

{endpoint: 'http://your_endpoint/api/casbin'}

);

// Set your visitor.

// Casbin.js will automatically sync the permission with your

backend Casbin service.

authorizer.setUser("Tom");

// Evaluate the permission

result = authorizer.can("read", "data1");

result.then((success, failed) => {

if (success) {

// Some frontend procedure ...

}

});

CasbinJsGetUserPermission to construct the permission object. Here is an

example in Beego:

NONOTETE

Your endpoint server should return something like

NONOTETE

Currently, the CasbinJsGetPermissionForUser API is only supported in

Go Casbin and Node-Casbin. If you want this API to be supported in other

{

"other":"other",

"data": "What you get from

`CasbinJsGetPermissionForUser`"

}

// Router

beego.Router("api/casbin", &controllers.APIController{},

"GET:GetFrontendPermission")

// Controller

func (c *APIController) GetFrontendPermission() {

// Get the visitor from the GET parameters. (The key is

"casbin_subject")

visitor := c.Input().Get("casbin_subject")

// `e` is an initialized instance of Casbin Enforcer

c.Data["perm"] = casbin.CasbinJsGetPermissionForUser(e,

visitor)

// Pass the data to the frontend.

c.ServeJSON()

}

languages, please raise an issue or leave a comment below.

API ListAPI List

setPermission(permission: string)

Set the permission object. Always used in manual mode.

setUser(user: string)

Set the visitor identity and update the permission. Always used in auto mode.

can(action: string, object: string)

Check if the user can perform action on object .

cannot(action: string, object: string)

Check if the user cannotcannot perform action on object .

canAll(action: string, objects:
Array<object>)

Check if the user can perform action on allall objects in objects .

https://github.com/casbin/casbin.js/issues

canAny(action: string, objects:
Array<object>)

Check if the user can perform action on anany oney one of the objects .

WhWhy Casbin.jsy Casbin.js
People may wonder about the difference between Node-Casbin and Casbin.js. In

a word, Node-Casbin is the core of Casbin implemented in the NodeJS

environment, and it's normally used as an access-controlling management toolkit

at the server ends. Casbin.js is a frontend library that helps you use Casbin to

authorize your webpage users at the client side.

Normally, it is not proper to directly build up a Casbin service and do the

authorization/enforcement tasks at a web frontend application due to the

following problems:

1. When someone turns on the client, the enforcer will be initialized, and it will

pull all the policies from the backend persistent layers. A high concurrency

could bring tough pressure on the databases and cost a lot of network

throughput.

2. Loading all policies to the client side could bring security risks.

3. It is difficult to separate the client and server as well as facilitate agile

development.

We need a tool that eases the process of using Casbin at the frontend. Actually,

the core of Casbin.js is the manipulation of the current user's permission at the

client side. As you mentioned, Casbin.js does a fetch from a specified endpoint.

This procedure will sync the permission of the user with the backend Casbin

service. After having the permission data, developers can use Casbin.js interfaces

to manage the behavior of the user at the frontend side.

Casbin.js avoids the two problems mentioned above: Casbin service will no longer

be pulled up repeatedly, and the size of passing messages between the client and

the server is reduced. We also avoid storing all the policies at the frontend. The

user can only access their own permission, but has no knowledge about the

access-control model and other users' permissions. Besides, Casbin.js can also

efficiently decouple the client and the server in authorization management.

EditEditoror

📄📄 Online Edit Online Editoror

Writing Casbin model and policy in a web browser

📄📄 IDE Plugins IDE Plugins

Casbin IDE plugins

Online EditOnline Editoror
You can also use the online editor to write your Casbin model and policy in your

web browser. It provides functionality such as "syntax highlighting" and "code

completion", just like an IDE for a programming language.

Use CustUse Custom Fom Functionsunctions
If you need to use a customized matching function (e.g. "RBAC with Patterns"),

you can add it by clicking the "Add Role Matching" button at the bottom left

corner of the editor.

.

http://localhost:3000/editor

If you want to write the equivalent code, you need to specify the pattern matching

function through the relevant API. Refer to RBAC with Pattern for more

information.

NONOTETE

The editor supports multiple Casbin implementations, including Node-

Casbin (Node.js), JCasbin (Java), Casbin (Go), and Casbin-rs (Rust). You

can switch between different implementations in the upper right corner to

test your model and policy.

Although the editor validates through a remote CLI, due to environment

differences, the validation results may differ slightly from the results you

get in your local environment. If you encounter any issues, please submit

them to the corresponding Casbin implementation repository.

https://github.com/casbin/node-casbin
https://github.com/casbin/node-casbin
https://github.com/casbin/jcasbin
https://github.com/casbin/casbin
https://github.com/casbin/casbin-rs

IDE PluginsIDE Plugins
We offer plugins for the following IDEs:

JetJetBrains IDEsBrains IDEs
• Download: https://plugins.jetbrains.com/plugin/14809-casbin

• Source code: https://github.com/will7200/casbin-idea-plugin

VSCodeVSCode
• Source code: https://github.com/casbin/casbin-vscode-plugin

https://plugins.jetbrains.com/plugin/14809-casbin
https://github.com/will7200/casbin-idea-plugin
https://github.com/casbin/casbin-vscode-plugin

MorMoree

📄📄 Our Adopt Our Adoptersers

Casbin's Adopters

📄📄 Contributing Contributing

Contributing to Casbin

📄📄 Priv Privacy Pacy Policyolicy

Casbin Website Privacy Policy

📄📄 T Terms of Sererms of Servicevice

Casbin Terms of Service

📄📄 R Refund Pefund Policyolicy

Casbin Website Refund Policy

Our AdoptOur Adoptersers
DirDirect Intect Integrationegration

GoGo JaJavvaa Node.jsNode.js PytPythonhon

NameName DescriptionDescription ModelModel PPolicyolicy

VMware

Harbor

VMware's open source trusted cloud

native registry project that stores, signs,

and scans content.

Code
Beego

ORM

Intel RMD Intel's resource management daemon. .conf .csv

VMware

Dispatch

A framework for deploying and managing

serverless style applications.
Code Code

Skydive
An open source real-time network

topology and protocols analyzer.
Code .csv

Zenpress A CMS system written in Golang. .conf Gorm

Argo CD
GitOps continuous delivery for

Kubernetes.
.conf .csv

Muxi Cloud
PaaS of Muxi Cloud, an easier way to

manage Kubernetes clusters.
.conf Code

https://github.com/goharbor/harbor
https://github.com/goharbor/harbor
https://github.com/goharbor/harbor/blob/main/src/pkg/permission/evaluator/rbac/casbin.go
https://github.com/goharbor/harbor/blob/main/src/common/rbac/project/rbac_role.go
https://github.com/goharbor/harbor/blob/main/src/common/rbac/project/rbac_role.go
https://github.com/intel/rmd
https://github.com/intel/rmd/blob/master/etc/rmd/acl/url/model.conf
https://github.com/intel/rmd/blob/master/etc/rmd/acl/url/policy.csv
https://github.com/vmware/dispatch
https://github.com/vmware/dispatch
https://github.com/vmware/dispatch/blob/master/pkg/identity-manager/handlers.go#L46-L55
https://github.com/vmware/dispatch/blob/master/pkg/identity-manager/handlers_test.go#L35-L45
https://github.com/skydive-project/skydive
https://github.com/skydive-project/skydive/blob/master/config/config.go#L136-L140
https://github.com/skydive-project/skydive/blob/master/rbac/policy.csv
https://github.com/insionng/zenpress
https://github.com/insionng/zenpress/blob/master/content/config/rbac_model.conf
https://github.com/insionng/zenpress/blob/master/model/user.go#L53-L77
https://github.com/argoproj/argo-cd
https://github.com/argoproj/argo-cd/blob/master/assets/model.conf
https://github.com/argoproj/argo-cd/blob/master/assets/builtin-policy.csv
https://github.com/muxiyun/Mae-old
https://github.com/muxiyun/Mae-old/blob/master/conf/casbinmodel.conf
https://github.com/muxiyun/Mae-old/blob/master/pkg/casbin/initPolicy.go#L21-L95

NameName DescriptionDescription ModelModel PPolicyolicy

EngineerCMS
A CMS to manage knowledge for

engineers.
.conf SQLite

Cyber Auth

API
A Golang authentication API project. .conf .csv

Metadata DB BB archive metadata database. .conf .csv

Qilin API
ProtocolONE's licenses management tool

for game content.
Code .csv

Devtron Labs
Software Delivery Workflow For

Kubernetes.
.conf Xorm

NameName DescriptionDescription ModelModel PPolicyolicy

lighty.io OpenDaylight's solution for SDN controllers. README N/A

NameName DescriptionDescription ModelModel PPolicyolicy

Notadd
A micro-service development architecture

based on Nest.js.
.conf

DB

adapter

ARC

API

A Catalog of Microservices based on

Loopback Created by SourceFuse.
Usage Provider

https://github.com/3xxx/EngineerCMS
https://github.com/3xxx/EngineerCMS/blob/master/conf/rbac_model.conf
https://github.com/3xxx/EngineerCMS/blob/master/database/engineer.db
https://github.com/CyberlifeCN/cyber-auth-api
https://github.com/CyberlifeCN/cyber-auth-api
https://github.com/CyberlifeCN/cyber-auth-api/blob/master/conf/authz_model.conf
https://github.com/CyberlifeCN/cyber-auth-api/blob/master/conf/authz_policy.csv
https://github.com/Bnei-Baruch/mdb
https://github.com/Bnei-Baruch/mdb/blob/master/permissions/permissions_model.conf
https://github.com/Bnei-Baruch/mdb/blob/master/permissions/permissions_policy.csv
https://github.com/ProtocolONE/qilin.api
https://github.com/ProtocolONE/rbac/blob/master/model.go
https://github.com/ProtocolONE/rbac/tree/master/conf
https://github.com/devtron-labs/devtron
https://github.com/devtron-labs/devtron/blob/main/auth_model.conf
https://github.com/devtron-labs/devtron/blob/main/pkg/auth/authorisation/casbin/Adapter.go
https://github.com/PantheonTechnologies/lighty-core
https://github.com/PantheonTechnologies/lighty-core/blob/6f2ceaae6a68e08c96d14d2fa8ee060ad9f61606/lighty-examples/lighty-controller-springboot-netconf/README.md#security
https://github.com/notadd/notadd
https://github.com/notadd/notadd/blob/e58d0a0cf5d691c3fe20170e94cdd8e2c627abd4/apps/nest-upms/src/casbin/rbac_model.conf
https://github.com/notadd/notadd/blob/e58d0a0cf5d691c3fe20170e94cdd8e2c627abd4/apps/nest-upms/src/casbin/adapter.ts
https://github.com/notadd/notadd/blob/e58d0a0cf5d691c3fe20170e94cdd8e2c627abd4/apps/nest-upms/src/casbin/adapter.ts
https://github.com/sourcefuse/loopback4-microservice-catalog
https://github.com/sourcefuse/loopback4-microservice-catalog
https://loopback.io/doc/en/lb4/
https://www.sourcefuse.com/
https://github.com/sourcefuse/loopback4-authorization#Extension-enhancement-using-CASBIN-authorisation
https://github.com/sourcefuse/loopback4-authorization/blob/master/src/providers/casbin-authorization-action.provider.ts

NameName DescriptionDescription ModelModel PPolicyolicy

dtrace EduScaled's tracing system. Commit N/A

IntIntegration via Pluginegration via Plugin

NameName DescriptionDescription PluginPlugin ModelModel PPolicyolicy

Docker

The world's leading

software container

platform

casbin-authz-plugin

(recommended by

Docker)

.conf .csv

Gobis

Orange's lightweight

API Gateway written

in go

casbin Code Request

https://github.com/EduScaled/dtrace
https://github.com/EduScaled/dtrace/commit/6e8d6b52ec2fa120e8ad63f84a4aecc3eae14c02
https://github.com/docker/docker
https://github.com/casbin/casbin-authz-plugin
https://docs.docker.com/engine/extend/legacy_plugins/#authorization-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#authorization-plugins
https://github.com/casbin/casbin-authz-plugin/blob/master/examples/basic_model.conf
https://github.com/casbin/casbin-authz-plugin/blob/master/examples/basic_policy.csv
https://github.com/orange-cloudfoundry/gobis
https://github.com/orange-cloudfoundry
https://github.com/orange-cloudfoundry/gobis-middlewares/tree/master/casbin
https://github.com/orange-cloudfoundry/gobis-middlewares/blob/master/casbin/model.go#L52-L65
https://github.com/orange-cloudfoundry/gobis-middlewares/blob/master/casbin/adapter.go#L46-L64

ContributingContributing
Casbin is a powerful authorization library that supports access control models

with implementations in many programming languages. If you are proficient in any

programming language, you can contribute to the development of Casbin. New

contributors are always welcome.

Currently, there are two main types of projects:

• AlgoritAlgorithms-orienthms-oriented pred projectojectss - These projects involve implementing

algorithms in different programming languages. Casbin supports a wide range

of languages, including Golang, Java, C++, Elixir, Dart, and Rust, along with

their related products.

Casbin jCasbin

Production-ready Production-ready

https://github.com/casbin/casbin
https://github.com/casbin/casbin
https://github.com/casbin/jcasbin
https://github.com/casbin/jcasbin
https://github.com/casbin/node-casbin
https://github.com/casbin/node-casbin
https://github.com/php-casbin/php-casbin
https://github.com/php-casbin/php-casbin
https://github.com/casbin/casbin
https://github.com/casbin/jcasbin
https://github.com/casbin/node-casbin
https://github.com/php-casbin/php-casbin

PyCasbin Casbin.NET

Production-ready Production-ready

• Application-orientApplication-oriented pred projectojectss - These projects are related to applications built

on top of Casbin.

PrProjectoject DemoDemo DetailsDetails Skill StacksSkill Stacks

Casdoor Casdoor

Casdoor is a UI-first centralized

authentication/Single-Sign-On

(SSO) platform based on OAuth 2.0/

OIDC.

JavaScript +

React and

Golang +

Beego + SQL

Casnode
Casbin

Forum

Casnode is a next-generation forum

software.

JavaScript +

React and

Golang +

Beego + SQL

https://github.com/casbin/pycasbin
https://github.com/casbin/pycasbin
https://github.com/casbin/Casbin.NET
https://github.com/casbin/Casbin.NET
https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-rs
https://github.com/casbin/casbin-rs
https://github.com/casbin/pycasbin
https://github.com/casbin/Casbin.NET
https://github.com/casbin/casbin-cpp
https://github.com/casbin/casbin-rs
https://github.com/casdoor/casdoor
https://casdoor.org/
https://github.com/casbin/casnode
https://forum.casbin.com/
https://forum.casbin.com/

PrProjectoject DemoDemo DetailsDetails Skill StacksSkill Stacks

Casbin

OA

OA

system

Casbin-OA is an official manuscript

processing, evaluation, and display

system for Casbin technical writers.

JavaScript +

React and

Golang +

Beego +

MySQL

Casbin

Editor

Casbin

Editor

Casbin-editor is a web-based editor

for Casbin models and policies.

TypeScript +

React

Getting InGetting Invvolvolveded
There are many ways to contribute to Casbin. Here are some ideas to get started:

• Use Casbin and rUse Casbin and reporeport issues!t issues! When using Casbin, report any issues you

encounter to help promote the development of Casbin. Whether it's a bug or a

proposal, filing an issue on GitHub is recommended. However, it would be

better to have a discussion first on Discord or GitHub Discussions before filing

an issue.

Note: When reporting an issue, please use English to describe the

details of your problem.

• Help witHelp with documentation!h documentation! Contributing to the documentation is a good

starting point for your contribution.

• Help solvHelp solve issues!e issues! We have prepared a table containing easy tasks suitable for

beginners, with different levels of challenges labeled with different tags. You

can check the table here.

https://github.com/casbin/casbin-oa
https://github.com/casbin/casbin-oa
https://oa.casbin.com/
https://oa.casbin.com/
https://github.com/casbin/casbin-editor
https://github.com/casbin/casbin-editor
https://editor.casbin.org/
https://editor.casbin.org/
https://github.com/casbin/casbin
https://discord.gg/S5UjpzGZjN
https://github.com/casbin/casbin/discussions
https://github.com/orgs/casbin/projects/2

Pull RPull Requestequestss
Casbin uses GitHub as its development platform, so pull requests are the main

way to contribute.

Before opening a pull request, there are a few things you need to know:

• Explain why you are sending the pull request and what it will do for the

repository.

• Make sure the pull request does only one thing. If there are multiple changes,

please split them into separate pull requests.

• If you are adding new files, please include the Casbin license at the top of the

new file(s).

// Copyright 2021 The casbin Authors. All Rights Reserved.

//

// Licensed under the Apache License, Version 2.0 (the

"License");

// you may not use this file except in compliance with the

License.

// You may obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in

writing, software

// distributed under the License is distributed on an "AS

IS" BASIS,

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied.

• In projects like Casdoor, Casnode, and Casbin OA, you may need to set up a

demo to show the maintainer how your pull request helps with the

development of the project.

• When opening a pull request and committing your contribution, it is

recommended to use semantic commits with the following format:

<type>(<scope>): <subject> . The <scope> is optional. For more detailed

usage, please refer to Conventional Commits.

LicenseLicense
By contributing to Casbin, you agree that your contributions will be licensed under

the Apache License.

https://github.com/casdoor/casdoor
https://github.com/casbin/casnode
https://github.com/casbin/casbin-oa
https://www.conventionalcommits.org/en/v1.0.0/

PrivPrivacy Pacy Policyolicy
Your privacy is important to us. It is Casbin's policy to respect your privacy

regarding any information we may collect from you across our docs website, as

well as other sites we own and operate.

We only ask for personal information when we truly need it to provide a service to

you. We collect it by fair and lawful means, with your knowledge and consent. We

also let you know why we are collecting it and how it will be used.

We only retain collected information for as long as necessary to provide you with

your requested service. The data we store will be protected within commercially

acceptable means to prevent loss and theft, as well as unauthorized access,

disclosure, copying, use, or modification.

We do not share any personally identifying information publicly or with third-

parties, except when required to by law.

Our website may link to external sites that are not operated by us. Please be

aware that we have no control over the content and practices of these sites and

cannot accept responsibility or liability for their respective privacy policies.

You are free to refuse our request for your personal information, with the

understanding that we may be unable to provide you with some of your desired

services.

Your continued use of our website will be regarded as acceptance of our practices

regarding privacy and personal information. If you have any questions about how

we handle user data and personal information, feel free to contact us.

This policy is effective as of 29th June 2020.

http://localhost:3000/

TTerms of Sererms of Servicevice
1. Terms

By accessing the website at https://casbin.org, you are agreeing to be bound

by these terms of service, all applicable laws and regulations, and agree that

you are responsible for compliance with any applicable local laws. If you do

not agree with any of these terms, you are prohibited from using or accessing

this site. The materials contained in this website are protected by applicable

copyright and trademark law.

2. Use License

a. Permission is granted to temporarily download one copy of the materials

(information or software) on Casbin's website for personal, non-commercial

transitory viewing only. This is the grant of a license, not a transfer of title,

and under this license you may not:

◦ i. modify or copy the materials;

◦ ii. use the materials for any commercial purpose, or for any public display

(commercial or non-commercial);

◦ iii. attempt to decompile or reverse engineer any software contained on

Casbin's website;

◦ iv. remove any copyright or other proprietary notations from the materials;

or

◦ v. transfer the materials to another person or "mirror" the materials on any

other server.

b. This license shall automatically terminate if you violate any of these

restrictions and may be terminated by Casbin at any time. Upon terminating

your viewing of these materials or upon the termination of this license, you

https://casbin.org/

must destroy any downloaded materials in your possession whether in

electronic or printed format.

3. Disclaimer

a. The materials on Casbin's website are provided on an 'as is' basis. Casbin

makes no warranties, expressed or implied, and hereby disclaims and negates

all other warranties including, without limitation, implied warranties or

conditions of merchantability, fitness for a particular purpose, or non-

infringement of intellectual property or other violation of rights.

b. Further, Casbin does not warrant or make any representations concerning

the accuracy, likely results, or reliability of the use of the materials on its

website or otherwise relating to such materials or on any sites linked to this

site.

4. Limitations

In no event shall Casbin or its suppliers be liable for any damages (including,

without limitation, damages for loss of data or profit, or due to business

interruption) arising out of the use or inability to use the materials on Casbin's

website, even if Casbin or a Casbin authorized representative has been

notified orally or in writing of the possibility of such damage. Because some

jurisdictions do not allow limitations on implied warranties, or limitations of

liability for consequential or incidental damages, these limitations may not

apply to you.

5. Accuracy of materials

The materials appearing on Casbin's website could include technical,

typographical, or photographic errors. Casbin does not warrant that any of

the materials on its website are accurate, complete or current. Casbin may

make changes to the materials contained on its website at any time without

notice. However Casbin does not make any commitment to update the

materials.

6. Links

Casbin has not reviewed all of the sites linked to its website and is not

responsible for the contents of any such linked site. The inclusion of any link

does not imply endorsement by Casbin of the site. Use of any such linked

website is at the user's own risk.

7. Modifications

Casbin may revise these terms of service for its website at any time without

notice. By using this website you are agreeing to be bound by the then

current version of these terms of service.

8. Governing Law

These terms and conditions are governed by and construed in accordance

with the laws of San Francisco, CA and you irrevocably submit to the

exclusive jurisdiction of the courts in that State or location.

RRefund Pefund Policyolicy
In most cases, payments for Casbin subscriptions are not refundable.

If you have an issue with your account or think there has been an error in billing,

please contact support for assistance.

https://tawk.to/chat/623352fea34c2456412b8c51/1fuc7od6e

	Overview
	Languages Supported by Casbin
	Feature Set for Different Languages

	What is Casbin?
	What Casbin Does
	What Casbin Does NOT Do

	Get Started
	Installation
	New a Casbin enforcer
	Check permissions

	How It Works
	Request
	Policy
	Matcher
	Effect

	Tutorials
	Our Papers
	Videos
	PERM Meta-Model (Policy, Effect, Request, Matchers)
	HTTP & RESTful
	Watcher
	Beego
	Gin
	Echo
	Iris
	Argo CD
	GShark
	SpringBoot
	Express
	Koa
	Nest
	Fastify
	APISIX

	Understanding How Casbin Matching Works in Detail
	Introduction to RBAC
	Understanding Azure's Hierarchical RBAC
	How Does Casbin Work?
	What is ACL?
	The model definition
	Now let's test the model on the Casbin editor
	Visual representation of the ACL model, policy, and request matching

	What is RBAC?
	The model definition
	Now let's test the model on Casbin editor
	Visual representation of the RBAC model, policy, and request matching

	What is Hierarchical RBAC?
	The model definition
	Now let's test the model on the Casbin editor
	Visual representation of the RBAC model, policy, and request matching
	Subject Matching Visual representation
	Action Matching Visual representation
	Object Matching Visual representation

	Conclusion

	Model
	📄️ Supported Models
	📄️ Syntax for Models
	📄️ Effector
	📄️ Functions
	📄️ RBAC
	📄️ RBAC with Pattern
	📄️ RBAC with Domains
	📄️ RBAC with Conditions
	📄️ Casbin RBAC vs. RBAC96
	📄️ ABAC
	📄️ Priority Model
	📄️ Super Admin

	Supported Models
	Examples

	Syntax for Models
	Request definition
	Policy Definition
	Policy Effect
	Matchers
	Order of expressions in matchers

	Multiple Section Types
	Special Grammar
	Expression Evaluator

	Effector
	MergeEffects()

	Functions
	Functions in matchers
	How to add a customized function

	RBAC
	Role Definition
	Role Hierarchy
	How to Distinguish Role from User?
	How to Query Implicit Roles or Permissions?
	Using Pattern Matching in RBAC
	Role Manager

	RBAC with Pattern
	Quick Start
	Use pattern matching in RBAC

	RBAC with Domains
	Role Definition with Domain Tenants

	RBAC with Conditions
	Conditional RoleManager
	Basic Usage
	Custom condition functions

	Conditional RoleManager with domains
	Basic Usage
	Custom condition functions

	Casbin RBAC vs. RBAC96
	Casbin RBAC and RBAC96
	The Difference Between Casbin RBAC and RBAC96

	ABAC
	What is the ABAC model?
	How to use ABAC?
	Scaling the model for complex and large numbers of ABAC rules

	Priority Model
	Load Policy with Implicit Priority
	Load Policy with Explicit Priority
	Load Policy with Priority Based on Role and User Hierarchy

	Super Admin
	Storage
	📄️ Model Storage
	📄️ Policy Storage
	📄️ Policy Subset Loading

	Model Storage
	Load model from .CONF file
	Load model from code
	Load model from string

	Policy Storage
	Loading policy from a .CSV file
	Adapter API
	Database Storage Format
	Adapter Details

	Policy Subset Loading
	Scenarios
	📄️ Data Permissions
	📄️ Menu Permissions

	Data Permissions
	1. Query Implicit Roles or Permissions
	2. Use BatchEnforce()

	Menu Permissions
	1. Configuration Files
	1.1 Overview
	1.2 Permission Definitions (Policies)
	1.3 Roles and User Associations
	1.4 Menu Item Hierarchy
	1.5 Menu Permission Inheritance and Default Rules
	1.6 Special Permission Inheritance Rules
	1.7 Example Description

	2. Menu Permission Control

	Extensions
	📄️ Enforcers
	📄️ Adapters
	📄️ Watchers
	📄️ Dispatchers
	📄️ Role Managers
	📄️ Middlewares
	📄️ GraphQL Middlewares
	📄️ Cloud Native Middlewares

	Enforcers
	Supported Enforcers

	Adapters
	Supported adapters
	Examples
	File adapter (built-in)
	MySQL adapter

	Use your own storage adapter
	Migrate/Convert between different adapter
	Load/Save at run-time
	AutoSave
	How to write an adapter
	Who is responsible to create the DB?

	Context Adapter
	Example
	How to write an context adapter

	Watchers
	WatcherEx

	Dispatchers
	DistributedEnforcer

	Role Managers
	API

	Middlewares
	Web frameworks
	Cloud providers

	GraphQL Middlewares
	Supported GraphQL Middlewares

	Cloud Native Middlewares
	Cloud Native Projects

	API
	📄️ API Overview
	📄️ Management API
	📄️ RBAC API
	📄️ RBAC with Domains API
	📄️ RBAC with Conditions API
	📄️ RoleManager API

	API Overview
	Enforce API
	EnforceEx API
	Management API
	Get API
	Add, Delete, Update API
	AddEx API

	RBAC API

	Management API
	Filtered API
	Reference
	Enforce()
	EnforceWithMatcher()
	EnforceEx()
	EnforceExWithMatcher()
	BatchEnforce()
	GetAllSubjects()
	GetAllNamedSubjects()
	GetAllObjects()
	GetAllNamedObjects()
	GetAllActions()
	GetAllNamedActions()
	GetAllRoles()
	GetAllNamedRoles()
	GetPolicy()
	GetFilteredPolicy()
	GetNamedPolicy()
	GetFilteredNamedPolicy()
	GetGroupingPolicy()
	GetFilteredGroupingPolicy()
	GetNamedGroupingPolicy()
	GetFilteredNamedGroupingPolicy()
	HasPolicy()
	HasNamedPolicy()
	AddPolicy()
	AddPolicies()
	AddPoliciesEx()
	AddNamedPolicy()
	AddNamedPolicies()
	AddNamedPoliciesEx()
	SelfAddPoliciesEx()
	RemovePolicy()
	RemovePolicies()
	RemoveFilteredPolicy()
	RemoveNamedPolicy()
	RemoveNamedPolicies()
	RemoveFilteredNamedPolicy()
	HasGroupingPolicy()
	HasNamedGroupingPolicy()
	AddGroupingPolicy()
	AddGroupingPolicies()
	AddGroupingPoliciesEx()
	AddNamedGroupingPolicy()
	AddNamedGroupingPolicies()
	AddNamedGroupingPoliciesEx()
	RemoveGroupingPolicy()
	RemoveGroupingPolicies()
	RemoveFilteredGroupingPolicy()
	RemoveNamedGroupingPolicy()
	RemoveNamedGroupingPolicies()
	RemoveFilteredNamedGroupingPolicy()
	UpdatePolicy()
	UpdatePolicies()
	AddFunction()
	LoadFilteredPolicy()
	LoadIncrementalFilteredPolicy()
	UpdateGroupingPolicy()
	UpdateNamedGroupingPolicy()
	SetFieldIndex()

	RBAC API
	Reference
	GetRolesForUser()
	GetUsersForRole()
	HasRoleForUser()
	AddRoleForUser()
	AddRolesForUser()
	DeleteRoleForUser()
	DeleteRolesForUser()
	DeleteUser()
	DeleteRole()
	DeletePermission()
	AddPermissionForUser()
	AddPermissionsForUser()
	DeletePermissionForUser()
	DeletePermissionsForUser()
	GetPermissionsForUser()
	HasPermissionForUser()
	GetImplicitRolesForUser()
	GetImplicitUsersForRole()
	GetImplicitPermissionsForUser()
	GetNamedImplicitPermissionsForUser()
	GetDomainsForUser()
	GetImplicitResourcesForUser()
	GetImplicitUsersForPermission()
	GetAllowedObjectConditions()
	GetImplicitUsersForResource()

	RBAC with Domains API
	Reference
	GetUsersForRoleInDomain()
	GetRolesForUserInDomain()
	GetPermissionsForUserInDomain()
	AddRoleForUserInDomain()
	DeleteRoleForUserInDomain()
	DeleteRolesForUserInDomain()
	GetAllUsersByDomain()
	DeleteAllUsersByDomain()
	DeleteDomains()
	GetAllDomains()
	GetAllRolesByDomain()
	GetImplicitUsersForResourceByDomain()

	RBAC with Conditions API
	Reference
	AddNamedLinkConditionFunc
	AddNamedDomainLinkConditionFunc
	SetNamedLinkConditionFuncParams
	SetNamedDomainLinkConditionFuncParams

	RoleManager API
	RoleManager
	AddNamedMatchingFunc()
	AddNamedDomainMatchingFunc()
	GetRoleManager()
	GetNamedRoleManager()
	SetRoleManager()
	SetNamedRoleManager()
	Clear()
	AddLink()
	DeleteLink()
	HasLink()
	GetRoles()
	GetUsers()
	PrintRoles()
	SetLogger()
	GetDomains()

	Advanced usage
	📄️ Multi-threading
	📄️ Benchmarks
	📄️ Performance Optimization
	📄️ Authorization of Kubernetes
	📄️ Admission Webhook for K8s
	📄️ Authorization of Service Mesh through Envoy

	Multi-threading
	Benchmarks
	Benchmark monitoring

	Performance Optimization
	High Volume Traffic
	High Number of Policy Rules

	Authorization of Kubernetes
	Requirements
	Usage

	Admission Webhook for K8s
	1. Overview & Documents for Casbin K8s-Gatekeeper
	0.1 A Simple Example
	1.1 How Casbin K8s-Gatekeeper Works?
	1.2 An Example Illustrating How It Works

	2 Install K8s-gatekeeper
	2.1 Internal webhook
	2.1.1 Step 1: Build the image
	2.1.2 Step 2: Set up services and deployments for K8s-gatekeeper
	2.1.3 Step 3: Install CRD Resources for K8s-gatekeeper

	2.2 External webhook
	2.3 Install K8s-gatekeeper via Helm
	2.3.1 Step 1: Build the image
	2.3.2 Helm installation

	3. Try K8s-gatekeeper
	3.1 Create Casbin Model and Policy
	3.1.1 Create/Update Casbin Model and Policy via kubectl
	3.1.2 Create/Update Casbin Model and Policy via the go-client we provide

	3.1.2 Try Whether K8s-gatekeeper Works

	4. How to Write Model and Policy with K8s-gatekeeper
	4.1 Request Definition of Model
	4.2 Matchers of Model
	4.2.1 Extension functions
	4.2.1.1 access
	4.2.1.2 accessWithWildcard

	4.2.1.3 Functions Supporting Variable-length Arguments
	4.2.1.2 Type Conversion Functions

	5. Advanced Settings
	5.1 About Certificates
	5.1.1 Self-signed certificates
	5.1.2 Legal certificates

	Authorization of Service Mesh through Envoy
	Requirements
	Working of the Middleware
	Usage
	Integrating with Istio

	Management
	📄️ Admin Portal
	📄️ Casbin Service
	📄️ Command-line Tools
	📄️ Log & Error Handling
	📄️ Frontend Usage

	Admin Portal
	Casbin Service
	How to Use Casbin as a Service?

	Command-line Tools
	Installation
	Go (casbin-go-cli)
	Rust (casbin-rust-cli)
	From crates.io
	From source

	Java (casbin-java-cli)

	Usage
	Options
	Get started

	Log & Error Handling
	Logging
	Use different loggers for different enforcers
	Supported loggers
	How to write a logger

	Error handling
	Enable and disable

	Frontend Usage
	Installation
	Frontend Middlewares
	Quick Start
	Permission Object

	Advanced Usage
	API List
	setPermission(permission: string)
	setUser(user: string)
	can(action: string, object: string)
	cannot(action: string, object: string)
	canAll(action: string, objects: Array<object>)
	canAny(action: string, objects: Array<object>)

	Why Casbin.js

	Editor
	📄️ Online Editor
	📄️ IDE Plugins

	Online Editor
	Use Custom Functions

	IDE Plugins
	JetBrains IDEs
	VSCode

	More
	📄️ Our Adopters
	📄️ Contributing
	📄️ Privacy Policy
	📄️ Terms of Service
	📄️ Refund Policy

	Our Adopters
	Direct Integration
	Integration via Plugin

	Contributing
	Getting Involved
	Pull Requests
	License

	Privacy Policy
	Terms of Service
	Refund Policy

